

Ain Shams University Faculty of Women for Art, Science and Education Home Economics Department

Thesis

Submitted in requirements of Ph.D (Home Economics- Textile and Clothing)

Entitled

Modern approach of antimicrobial finishing of textiles utilized in different purposes creative designs

Ву

Rania Nabil Shaker Gomaa

Assistant lecturer in Home Economics Dept.

Faculty of Women for Art, Science and Education

– Ain Shams University

Supervised by

Prof. Dr. Wafaa A. EL-Sayed

Prof. of Applied Textile Chemistry and Dyeing Home Economics Dept. Faculty of Women for Art, Science and Education

Dr. Sherif Mousa Husseiny Assistant Professor of Microbiology Botany Dept. Faculty of Women for Art, Science and Education

Dr. Maha M. T. Eladwi

Assistant Professor of Textile and Clothing Home Economics Dept. Faculty of Women for Art, Science and Education

Dr. Nagah S. Ashour

Lecturer of Textile and Clothing Home Economics Dept. Faculty of Women for Art, Science and Education

Acknowledgment

Thank God for the wisdom and perseverance that he has been bestowed upon me during this research project, and indeed, throughout my life.

It gives me great pleasure in expressing my gratitude to all those people who have supported me and had their contributions in making this thesis possible.

There are no proper words to convey my deep gratitude and respect for my thesis research advisor, Prof. Dr. Wafaa A. Elsayed Prof. of Applied Textile Chemistry and Dyeing. Faculty of women for Art, science University, Education, Ain Shams she has inspired to become an independent me researcher and helped me realize the power of critical reasoning. She also demonstrated what a brilliant and hard-working scientist can accomplish .and for her great support in practical and personal life in teaching me how to be a responsible, independent and self confident.

Ιt is with immense gratitude that Ι acknowledge the support and help of my supervisor Dr. Maha Eladwi Associate Prof. of textile and clothing, Home Economic Department for Art. Faculty of women science and Education, Ain Shams University, the continuous support of my Ph.D study and

research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D study. Also I would like to express my deepest thanks for her precious friendship.

I would like to express my deepest sense of gratitude to my supervisor Dr. Nagah Said Aashour lecturer of textile and clothing, Home Economic Department Faculty of women for Art, science and Education, Ain Shams University, for her supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary experiences through out the work.

I gratefully acknowledge Dr. Shreef Mousa, Associate Prof. in Botany Department, Faculty of women for Art, science and Education, Ain Shams University, , for his support and providing all possible facilities to complete this work.

I am grateful to my best friends Dr. Rehab Mahmoud, Dr. Naglaa Abd Elaazeem and Omnia khairy lecturers of textile and clothing, Home Economic Department Faculty of women for Art, science and Education, Ain Shams University, for their sincere help and advice, and for being great supporting and understanding friends throughout many years.

Also I would like to thank Dina M. nabih assistant lecturer of textile and clothing, Home Economic Department Faculty of women for Art, science and Education, Ain Shams University, her great support and help.

My sincere thanks must also go to the members of my thesis advisory and exam committee

Last, but not least, I would like to dedicate this thesis to my family. I deeply thank my parents my Dad Nabil my mum Nahed and my sisters Nahla anb Basima and my young brother Mohammad for their unconditional trust, timely encouragement, and endless patience. It was their love that raised me up again when I got weary

And sincerely I thank with love my husband colonel Maged M. Taha for Understanding me he has been my best friend and great companion, loved, supported, encouraged, entertained, and helped me get through this agonizing period in the most positive way, also I would like to thank my older son Moez (mozo) for being obeying and understanding boy and my new baby Malek (loca) for not being so noisy this days.

Also to someone we lost recently and he gave me a lot of support along my life Uncle mohamad A.alhaleem.

Finally I would like to dedicate my success in any part of my life to my beloved **grandmother Taita Basseema I missed u.**

Contents

C	Page
Summary	XIV
1. Introduction and literature review	1
1.1. Antimicrobial Finishing	1
1.1.1. Microbe	2
1.1.2. The conditions that required for the growth of the micro organisms	2
1.1.3. Requirements of Antimicrobial Finishing	
1.1.4. The Antimicrobial Finish	3
1.1.4.1. Leaching type (conventional antimicrobial)	3
1.1.4.2. Non - Leaching type	4
1.1.5. Antimicrobial Effect	4
1.1.6. Mechanisms of antimicrobial action	5
1.1.7. The Antimicrobial Agents	6
1.1.7.1. Metallic Salts	6
1.1.7.2. Quaternary Ammonium Salts	6
1.1.7.3. Magnesium Peroxide Based agents	6
1.17.4. Poly-Hexamethylene Biguandine (PHMBG)	6
1.1.7.5. Organic N – Halamins Compound	7
1.1.7.6. Chitosan	8
1.1.7.7. Dyes	9
1.1.7.8. Antibiotic	10
1.1.7.9. Crosslinked Polyols	10
1.1.8. Evaluation of Antimicrobial Activity	11
1.1.9 .Repellent Finishing	13
1.2. Textile Fibers	13
1.2.1 .Natural Cellulosic Fibers	14
1.2.1.1 Chemistry of Cellulose	14
1.2.1.1.2 Properties of Cotton Fiber	16
1.2.2 Regenerated Cellulose Fibers	17
1.2.2.1. Viscose Fibers Manufacturing	17

1.2.22. Properties of Viscose Fiber	19
1.2.3- Man- Made Fibers: (synthetic Fibers)	21
1.2.3.1 .Polyester Fibers	21
1.2.3.1.2 Polyester Fibers Manufacturing	22
1.2.3.1.3- Properties of Polyester Fiber	23
1.3. Dyeing	25
1.3.1.Colorants and dyes	25
1.3.2. Dye classification	27
1.3.2.1. Reactive dyes	27
1.4 Fashion	28
1.4.1. types of fashion design	28
1.4.1.1. Structural design	28
1.4.1.2 -Functional design	29
1.4.1.2.1 Functional design and fashion design	29
1.4.1.2.2Antimicrobial textiles and clothes	30
1.4.1.2.3Fabrics used in gowns and drapes	32
Fibers-yarns – fabric construction - finishes	
1.4.1.2.4. Fabric properties that influence barrier properties	33
repellency – pore size)	
1.4.1.2.5. Gown Design	33
1.4.1.3- Decorative Design	35
1.4.1.3.1- Types of Decorative Design	35
1.4.1.3.2-Trimmings and Decoration	36
1.4.2. Design source	37
1.4.2.1. Photographs of Garments	37
1.4.2.2. Artifacts and Images	38
1.4.2.3 Natural Objects	38
1.4.2.4 Historic and Ethnic Costume:	38
1.4.2.4.1- Historic influence (Egyptian style-Greek style	38
-Roman style -Empire style	
1.4.2.4.2 -Folk dresses (Egyptian -Cowboy -African	43
1.4.2.5 Vintage clothing shops and services	46
1.4.2.6 Museums	46
1.4.2.7. Libraries and bookstores	46

1.4.2.8. Arts	46
1.4.2.9. Fabrics	47
1.4.2.10. Travel and Nature	47
1.4.2.11. Form Follows Function	47
1.4.2.12. The Street Scene	47
1.4.2.13. Awareness	47
2- Aim of work	48
3. Experimental work	50
3.1. Materials	50
3.1.1. Fabric	50
3.1.2. Chemicals	50
3.1.3. Microorganisms used.	50
3.1.4. Dyes and transfer printing paper	51
3.2. Methods	51
3.2.1Treatment of different finishing agents	51
3.2.2. Alkali treatment of polyester fabrics.	52
3.2.3. Treatment of viscose, cotton and polyester fabrics	52
with Polyethylene glycol (PEG).	
3.2.4. Fabric Oil and Water Repellency treatment:	53
3.2.5. Dyeing of viscose and cotton fabrics with reactive and	53
direct dyes.	
3.2.6. The printing of polyester fabrics	54
3.3. Testing and analysis	54
3.3.1 Antimicrobial activity of the treated fabrics	54
3.3.1.1 Antibacterial activity	54
3.3.1.2 Antifungal Activity:	55
3.3.2. Physico- mechanical measurements	55
3.3.2.1. Fabric stiffness	55
3.3.2.2. Tensile strength and elongation	55
3.3.2.3. The air permeability of the fabric	55

3.3.2.4. The crease recovery angles	55
3.3.2.5. The evaluation of wettability	55
3.3.3. Color strength (K/S)	56
3.3.4. Fastness properties measurements	56
3.3.4.1. Light fastness	56
3.3.4.2. Wash fastness	56
3.3.4.3. Fastness to perspiration	56
3.3.5. Durability test	56
3.4. Designs, Pattern and layout:	57
3.4.1.Suggested Designs	57
3.4.2.The Patterns	66
4-Results and Discussion	
	74
4.1 Effect of different finishing agent on the antibacterial activity of cotton fabric	74
4.2. Treatment of cotton, viscose and polyester fabrics with Polyethylene Glycol	76
4.2.1 Effect of Polyethylene Glycol molecular weight: on the antibacterial activity	76
4.2.2. Effect of Polyethylene Glycol concentration on the antibacterial activity	78
4.2.3. Effect of citric acid concentration on the antibacterial activity	80
4.2.4. Effect of curing time and curing temperature on the antibacterial activity	82
4.3. Durability to laundering	83
4.4. Effect of polyethylene glycol (PEG) treatment of the	84
physical and mechanical properties of cotton, viscose and	

polyester fabrics

4.5 Effect of the dyeing on the antibacterial properties of PEG treated cotton and viscose dying with reactive and direct dye	85
4.6. Effect of polyethylene glycol treatment on the K/S of the cotton and viscose fabrics dyeing with reactive and direct dyes	86
4.7. Effect of polyethylene glycol treatment on the fastness properties of dyed fabrics	88
4.8. Effect of the transfer printing on the K/S values of polyester fabric treated with polyethylene glycol PEG	90
4.9. Effect of the transfer printing on the antibacterial properties of polyester fabric treated with polyethylene glycol (PEG).	91
4.10. Effect of the polyethylene glycol treatment on the fastness properties of transfer printed polyester fabric	92
4.11. Quantitative evaluation for viscose, cotton and polyester fabric against different type of microbes (<i>E.coli, S.aureus, A. niger and C.ablicans</i>)	93
4.12. Effect of the water-oil repellency treatment of wettability of cotton fabric treated with crosslinked polyethylene glycol and RUCOSTAR [®] EEE	94
4.13. Effect of water –Oil Repellency treatment on the antibacterial activity of cotton fabric treated with crosslinked PEG	96

5. Designs and products

References Arabic summary	125 j
5.6. The analysis of designs and products	101
5.5. Crochet	100
5.4. Direct hand drawing	100
5.3 Stencil printing	99
5.2. Batik.	98
5.1. Tie and Dye Technique:	97
	97

List of Figures

Figure No.	Name of Figure	page
1	structure of polyhexamethylene biguanide (PHMB)	7
2	structure of chitin and Chitosan	7
3	Regenerable antimicrobial treatments using N - halamine compounds	9
4	Molecular structure and configuration of Cellulose	14
5	2 Optical micrographs of raw cotton fibers	15
6	Cotton fiber morphology	15
7	Chemical reactions in viscose process	18
8	Cross-sectional and longitudinal shapes of regular viscose fiber	19
9	Chemical reactions in polyester process	22
10	Flow chart of polyester fiber manufacturing.	23
11	Types of surgical gowns	34
12	Ancient Egyptian women	40
13	Ancient-Greek costumes	41
14	Dress from the empire style	42
15	styles of Sini clothes	44
16	sample of siwa cloth	44
17	styles of African clothes	46

18	Dyeing profile of C.I.Reactive Blue 195	53
19	Dyeing profile of C.I.Direct Red 89	53
20	Effect of Polyethylene Glycol molecular weight on the antimicrobial activity of viscose fabric	76
21	Effect of Polyethylene Glycol molecular weight on the antimicrobial activity of cotton fabric	77
22	Effect of Polyethylene Glycol PEG molecular weight on the antimicrobial activity of cotton fabric	77
23	Effect of Polyethylene Glycol concentration on the antimicrobial activity of viscose fabric	79
24	Effect of Polyethylene Glycol concentration on the antimicrobial activity of cotton fabric	79
25	Effect of Polyethylene Glycol concentration on the antimicrobial activity of polyester fabric	79
26	Effect of Citric acid % concentration on the antimicrobial activity of viscose fabric	80
27	Effect of Citric acid % concentration on the antimicrobial activity of cotton fabric	81
28	Effect of Citric acid % concentration on the antimicrobial activity of polyester fabric	81

29	Effect of polyethylene glycol treatment on the K/S of the cotton and viscose fabrics dyeing with reactive dye.	86
30	Effect of polyethylene glycol treatment on the K/S of the cotton and viscose fabrics dyeing with reactive dye.	87
31	Effect of the transfer printing on the K/S values of polyester fabric treated with polyethylene glycol PEG	90
32	Effect of the transfer printing on the antibacterial properties of polyester fabric treated with polyethylene glycol (PEG).	91
33	Effect of Polyethylene glycol and Rucostar [®] EEE treatment on the wettability of cotton fabric.	94
34	Effect of Polyethylene glycol a Rucostar [®] EEE treatment on the antibacterial activity of cotton fabric.	96
35	sample of tie- dye technique	98
36	Sample of Batik printing technique.	99
37 38	Sample of stenciling-resist printing technique. Sample of crochet hand	100 100

Title of Table

Table No.	Title of Table	Page
1	Examples of microorganisms Pathogenic /Parasitic on Deleterious to polymeric substrates	2
2	some glycols and their molecular structure	10
3	laboratory tests for antibacterial and antifungal activity	12
4	Composition of typical cotton	15
5	Dyes used in transfer printing paper	51
6	The Effect of different finishing agent on the antibacterial activity of cotton fabric.	75
7	the effect of the curing time and temperature on the antibacterial properties of Cotton, viscose and polyester fabrics	82
8	The effect of the polyethylene glycol (PEG) treatment on the antimicrobial activity after laundering.	83
9	the effect of the PEG treatment on the physical and mechanical properties of Cotton, viscose and polyester fabrics	84
10	Effect of the dyeing on the antimicrobial properties of PEG treated cotton and viscose dying with reactive and direct dye.	85