Examiners Committee

Name	Reda Salama Mohamed Ghoname
Thesis	CAD of Front - end Transceiver for Wireless Communication
Degree	Doctor of Philosophy In Electronics and Communications
Department	Electronics and Communications Dept.

	Name, Title, and Affiliation	Signature
1.	Prof. Dr. Nabile Abdel Latif El- Deeb	
	Dean of Faculty of Computer Science	
	Modern University For Technology and	
	Information	
2.	Prof. Dr. Safwat M. Mahmoud	
	Electronics and Communication Eng. Dept.	
	Faculty of Engineering, Ain Shams University	
3.	Prof. Dr. Hadia M.S.El-Hennawy	
	Vice Dean for Graduate Studies and	
	Research	
	Ain Shams University	
4.	Prof. Dr. Esmat A.F.Aballah	
	Head of Microstrip Dept.,	
	Electronics Research Institute	

Date: / / 2005

Acknowledgment All gratitude is due to ALLAH

I am indebted to many people for their advice, encouragement and assistance throughout the preparation of this thesis. First, I would like to express my deepest thanks and sincere gratitude to Prof.Dr./Esmat Abd El Fattah Abdallah, chair of the Microstrip Department (Electronics Research Institue), not only for her useful supervision, sincere advice and guidance, but also for her unlimited assistance, valuable consultation, helpful comments and critical remarks while reviewing the manuscript. My special thanks and appreciation to her.

My deepest gratitude and thanks to Prof.Dr./ Hadia El Henawy, Vice Dean for Graduate Studies and Research, Ain Shams University, for her unceasing encouragement and powerful support.

I would like to express my deepest gratitude to prof.Dr./Ayman El-Desouki President of ERI, and Dr.Abd El-Fattah El-Souhli President of Banha Company for Electronic Industries.

I would like to express my gratitude to the staff of the Microstrip Department especially Dr. Ashraf Shawki for helping me in antenna design, Mr. Yousef Nageib and Mr.Mahmoud Seleim for helping me during the fabrication of the microstrip circuits. Thanks to Dr. Amr Ezzat for helping in calibrations and measurements,

Finally, I would like to express my deepest gratitude to my husband and my children for helping me during the course of this thesis.

CONTENTS

Page
I III
1 3 3 3 ms 4 4 4 5 6 7 7 8 8 9 10 11 11 12 12 12 15 15 15 16 17 17 18
19 21

Chapter 2. Compact, Broadband Microstrip Antennas For Mobile Communication

2.1 Introduction	23
2.2 Antenna design	24
2.2.1 Rrquirement for mobile antennas	24
2.2.2 Design concept	25
2.3 Microstrip antenna	26
2.4 Compact antenna	28
2.5 Compact broadband microstrip antennas	32
2.6 Compact dual – frequency microstrip antennas	34
2.7 Compact microstrip antennas with enhanced gain	34
2.8 Design and performance of novel shorted microstrip antennas	35
2.9 TRL calibration kit for FR-4 substrate	41
2.10 Measurement errors	42
2.11 Measurement calibration	43
2.11.1 Calibration kit	43
2.11.2 Standard definition	44
2.11.3 Standard class assignment	44
2.12 Removing fixture errors	44
2.13 TRL calibration procedure	47
2.14 Requirements for TRL standards	48
2.15 Fabricating and defining calibration standard for TRL	49
2.16 Tunable miniature microstrip antenna	50
2.16.1 Proposed structure and basicidea	50
2.16.2 Problem formulation	51
2.16.3 SOLT and de-embding	52
2.16.3 Thru-Reflect-Line (TRL)	53
2.17 Numerical and experimental results	54
2.18 Dual band antenna with vias	55
2.19 Suggested novel miniature microstrip antennas	60
2.19.1 The first antenna	60
2.19.2 The second antenna	60
2.19.3 The third antenna	60
2.19.4 The fourth antenna	60
2.20 Conclusion	64

Chapter 3. Passive components

- 3.1 Introduction65
- 3.2Band-pass filters66
 - 3.2.1 RF filter synthesis66

3.2.1.1 Conventional microstrip band -pass filters	68
3.2.1.2 Compact filters and filter miniaturization	76
3.2.1.3 Modified shapes of compact microstrip band pass filter	s 85
3.2.2 IF Band –pass filters	89
3.3 Biasing network	92
3.3.1 Basic design of lumped elements	93
3.3.2 Via holes95	
3.4 Conclusion	99
Chapter 4. GaAs FET power amplifier	
4.1 Introduction	100
4.2 Analysis of ideal GaAs FET class A and B power amplifier	101
4.2.1 Device physics versus circuit design viewpoint	101
4.2.2 Class A power amplifiers	101
4.2.3 Single ended class B amplifiers with resistive loads	103
4.2.4 Single ended class B amplifier with tuned load	104
4.2.5 Push –pull class B amplifiers	105
4.2.6 Comparison of the various types of power amplifier	106
· · · · · · · · · · · · · · · · · · ·	107
4.4 Bandwidth limitations of reactively matched amplifiers	108
4.4.1 Output matching network	108
4.4.2 Input matching network	109
4.5 Nonlinear transistor modeling for circuit simulation	109
4.5.1 Modeling	109
4.5.2 Two dimensional models	109
4.6 Equivalent circuit model	111
4.7 Nonlinear circuit analysis	116
4.7.1 Time domain methods	116
4.7.2 Harmonic balance methods	117
4.7.3 Fundamental of harmonic balance simulation	117
4.7.4 The Krylov subspace solver	118
4.8 Accuracy considerations	119
4.9 Optimization and minimization methods	119
4.10 MESFETs models	120
4.11 Some aspects of software implementation	123
4.11.1 Circuit description	123
4.11.2 Implementation of nonlinear function in	123
semiconductor equivalent circuit models	
4.11.3 Implementation of physical models in circuit simulators	124
4.11.4 Newton's method damping factor	125
4.12 Power amplifier and driving circuits	125
4.12.1 Extracting model parameter of the transistor	125

4.12.2 Comparison between GaAsMESFET model	128
and statz model 128	
4.12.3 Linear model of the driving stage	138
4.13 Layout and simulated results	140
4.14 Conclusion	146

Chapter 5. Design, Simulation and Measurement of the Transceiver RF-Front -End

5.1 Introduction	147
5.2 Fabrication Techniques	148
5.2.1 Microstrip circuits	148
5.2.1.1 The substrate	148
5.2.1.2 Photolithographic process	150
5.3 Simulation and Measurement of Separate Components	154
5.3.1 Design and simulation of T/R switch	158
5.3.3 Design and simulation of power driver	170
5.3.4 IF mixer (280 MHz)	172
5.3.5 IF mixer (55 MHz)	177
5.3.6 IF amplifier at 280 MHz	181
5.3.7 Design and simulation of LNA	182
5.4 RF Front –End Simulation and Layout	186
5.4.1 Receiver mode	186
5.4.1.1 Simulation of RF BPF&LNA	186
5.4.1.2 Simulation of the complete receiving module	190
5.4.2 Transmitting mode	196
5.4.2.1 Simulation of power amplifier &power driver	196
5.4.2.2 Simulation of the complete transmitting module	200
5.5 Simulation of the 2.4 GHz Transceiver RF Front- End	205
5.6 Conclusion	219

Chapter 6: Conclusion and suggestions for further work

6.1 Conclusion

6.2 Suggestions for further work

Appendix A:

Appendix B:

References

List of Symbols

AM amplitude modulation

VLSI very large scale integrated circuit
VLIF very low intermediate frequency
WLANs wireless local area networks

RF radio frequency

GSM globle system for mobile

GPRS globle position receiver system

EDGE enhanced data globle system for mobile

IS-95 information sevices

UMTS universal mobile telecommunication system IMT2000 international mobile telecommunication DECT digital enhanced cordless telecommunication

III-V compound semiconductor

HMIC

MMICs

A/D

LNA

VGA

CAD

PCs

SAW

MGA

 IP_{1dB}

IBL

 $G_{\scriptscriptstyle LNA}$

 P_{LO}

List of Figures

CI 4 4		Page
Chapter 1		
Fig.1.1	Block diagram of front-end transceiver	5
Fig.1.2	Frequency spectrum showing image interference	8
Fig.1.3	Power sweep showing third and second order intercept	10
Fig.1.4	Points Synthesis of a microstrip circuit in an optimization	14
11g.1.4	Loop	17
Fig.1.5	ADS software contents	18
Chapter 2		
Fig.2.1	Global mobile communication	23
Fig.2.2	Geometries of a rectangular patch antenna	29
Fig.2.3	Surface current for meandered rectangular	29
C	microstrip patch	
Fig.2.4	Compact microstrip antenna	30
Fig.2.5	Some slotted patches	31
Fig.2 . 6	Geometry of microstrip line	31
	planar inverted L patch antenna	
Fig.2.7	Geometry of prob fed meandered microstrip antenna	32
Fig.2.8	Geometry of a prob fed antenna	33
	with slotted ground plane	
Fig.2 . 9	Geometry of a prob fed slotted	33
	trianglular microstrip antenna	
Fig.2.10	Geometry of a microstrip antenna	33
	with chip resistor loading	
Fig.2.11	Geometry of a stacked shorted patch antenna	33
Fig.2.12	Geometry of a shorted rectangular	35
	antenna with L-shaped	
Fig.2.13	Geometry of slot loaded meandered microstrip antenna	35
Fig.2.14	Conventional and proposed microstrip antennas	36
Fig.2.15	First microstrip antenna	37
Fig.2 . 16	Second microstrip antenna	38
Fig.2.17	Modified disc antenna	38
Fig.2.18	The computer layout of microstrip antennas	39
Fig.2.19	Photo reduction film of microstrip antennas	39
Fig.2.20	Photographs of the first and second antennas	39
Fig.2.21	Microstip antenna, schematic, fabricated, and measured	
Fig.2 . 22	Typical measurement set up	42

Fig.2 . 23	Full two port calibration	46
Fig.2.24	De-embedding	46
Fig.2.25	Direct measurement	46
Fig.2.26	Equivalent LC circuit of shorting	51
	wall antenna	
Fig.2.27	Propagation constant and losses	52
Fig.2.28	Equivalent circuit of the connector	53
	and transmission line	
Fig.2.29	TRL calibration kit for FR-4 substrate	54
Fig.2.30	Antenna with different number of vias	54
Fig.2.31	Simulated results	55
Fig.2.32	Radiation patteren for one,three, and six vias	56
Fig.2.33	Reflection coefficient against	57
	frequency for one, three and six vias antennas	
Fig.2.34	Reflection coefficient against frequency	58
	for one via dual band antennas	
Fig.2.35	Reflection coefficient against frequency	59
	for one via 1mm from right antenna	
Fig.2.36	Via positions against frequency	59
Fig.2.37	First shape	61
Fig.2.38	Second shape	61
Fig.2.39	Third shape	62
Fig.2.40	Forth shape	62
Chapter	3	
Fig.3.1	Compact microstrip filters	68
Fig.3.2	Conventional &layout of a 3-pole microstrip	69
8	parallel coupled half wave resonator BPF	
Fig.3.3	Conventional microstrip hairpin BPF	71
Fig.3.4	Conventional interdigital microstrip BPF	72
Fig.3.5	Conventional microstrip combline BPF	74
Fig.3.6	Conventional microstrip shunt stub BPF	75
Fig.3.7	Pseudointerdigital microstip BPF	78
Fig.3.8	The simulated and measured performance	78
Fig.3.9	3-D current density	79
Fig.3.10	The simulated&measured performance	79
_	with one via centered at edge 3,4	
Fig.3.11	Planar filter	80
Fig.3.12	Microstrip 0° feed BPF	81
Fig.3.13	The simulated & measured performance	82
_	with terminated 50Ω	

Fig.3.14	Twin microstrip BPF	83
Fig.3.15	Twin microstrip BPF with one &three vias	84
Fig.3.16	Modified shapes microstrip BPF	86
Fig.3.17	Layout &response of IF filter at 280 MHz	90
Fig.3.18	Layout &response of IF filter at 55 MHz	91
Fig.3.19	L & C biasing networks and their responses	92
Fig.3.20	Microstrip inductor shapes	93
Fig.3.21	Capacitor-resistor representation of a short circuited	95
	Transmission line	
Fig.3.22	Capacitors shape	95
Fig.3.23	Various ground connection techniques in MICs	96
Fig.3.24	Via hole connection through dielectric	97
J	and backside via hole ground	
Fig.3.25	Microstrip via Fence	98
	-	
Chapter 4		
E: - 4 1	C::t 1:	102
Fig.4.1	Circuit diagram of class A or B amplifier	102
Fig.4.2	Voltage current waveforms for class A amplifier	103
Fig.4.3	Voltage current waveforms for class B amplifier with resistive load	104
Fig.4.4	Voltage current waveforms for class B amplifier with	105
	tuned load	
Fig.4.5	Circuit diagram of a class B push-pull amplifier	106
Fig.4.6	Block diagram of a single stage amplifier	107
Fig.4.7	Output matching network	109
Fig.4.8	The conventional small signal model MESFET	112
Fig.4.9	The conventional large signal model MESFET	112
Fig.4.10	Cross section and bias circuit for MESFET	114
Fig.4.11	Complete chip package parasitic model	121
Fig.4.12	Forward gate FET model measurements	121
Fig.4.13	Pinched FET model	121
Fig.4.14	Microstrip circuit for measuring	127
	S-parameter of GaAs MESFET transistor	
Fig.4.15	The resulting S-parameter at best optimization values	127
Fig.4.16	Statz model131	
Fig.4.17	GaAsMESFET model	137
Fig.4.18	Linear model for BJT	139
Fig.4.19	Microstrip layout&land patteren of two stage PA	142
Fig.4.20	Linear &nonlinear S-parameters	146

Chapter 5

Fig.5.1	The photolithographic process	150
Fig.5.2	Front-end transceiver	156
Fig.5.3	Series & shunt PIN RF switch	157
Fig.5.4	The simulated result of T/R switch	158
Fig.5.5	Interstage inductor L2 and bias circuit	159
Fig.5.6	Values for interstage inductor	160
Fig.5.7	Initial output matching for small signal	161
Fig.5.8	Final RF output matching network	161
Fig.5.9	Initial small signal input matching	162
Fig.5.10	Final RF input matching network	162
Fig.5.11	2.4 GHz microstrip power amplifier	164
Fig.5.12	The simulator result for	169
	microstrip power amplifier	
Fig.5.13	Measured & simulated S_{21}	170
	for microstrip power amplifier	
Fig.5.14	Schematic diagram of the power driver	171
Fig.5.15	The computer layout & photoreduction	171
	film of power driver	
Fig.5.16	Numerical & experimental	172
	results of power driver	
Fig.5.17	Conversion gain, port-to—port isolation,	173
	port impedances and reflection coefficients for IF m	ixer
Fig.5.18	Conversion gain, isolation, impedance	175
	vs.LO power &RF input frequency for IF mixer	
Fig.5.19	Up-down conversion gain	177
Fig.5.20	Conversio gain, port-to-port isolation,	177
	reflection coefficients and port impedances for IF an	nplifier
Fig.5.21	Conversion gain, isolation, impedance	178
	vs.LO power &RF input frequency for IF amplifier	•
Fig.5.22	Up-down conversion gain	180
Fig.5.23	Linear S-parameter &layout of	182
	IF amplifier	
Fig.5.24	MGA-71543 Functional diagram	183
Fig.5.25	Gate bias method	183
Fig.5.26	Source resistor method	184
Fig.5.27	Model circuit, layout, photoreduction	185
	mask& photo of LNA	
Fig.5.28	Numerical & experimental results	186
Fig.5.29	Circuit layout of the 2.4 GHz	187
	transceiver RF front-end	

Fig.5.30	RF BPF &LNA block diagram	188
Fig.5.31	The simulated result	189
Fig.5.32	Conversion gain, port-to—port isolation,	190
	port impedances and reflection coefficients	
Fig.5.33	Conversion gain, isolation, impedance vs. power	191
Fig.5.34	Conversion gain, isolation, impedance	192
	vs. RF frequency	
Fig.5.35	Down- up conversion gain	193
Fig.5.36	Second and third order IMD	194
	and conversion gain	
Fig.5.37	power amplifier driver	195
Fig.5.38	Linear S-parameter	196
Fig.5.39	Nonlinear 1-Tone S-prameter	199
Fig.5.40	Conversion gain,port-to-port	201
	Isolation, port impedances and	
	Reflection coefficient	
Fig.5.41	Conversion gain, isolation, vs. RF frequency	202
Fig.5.42	Down-up conversion gain	203
Fig.5.43	2 nd and 3 rd order IMD and conversion gain	204
Fig.5.44	Spectrum, gain, and harmonic distortion	206
Fig.5.45	Spectrum, gain and harmonic	207
	distortion vs. frequency	
Fig.5.46	Spectrum, gain and harmonic distortion	208
	vs. power	
Fig.5.47	Spectrum, gain and harmonic distortion,	209
	PAE	
Fig.5.48	2-Tone spectrum, gain, harmonic distortion	210
Fig.5.49	2-Tone spectrum, gain, TO1,5 th O1 vs.power	211
Fig.5.50	2-Tone spectrum, gain, TO1,5 th O1	212
Fig.5.51	output spectrum,3 rd &5 th order IMD	213
	And conversion gain	
Fig.5.52	output spectrum, transducer power	214
	gain, group delay vs.power	
Fig.5.53	spectrum, gain, harmonic distortion vs. frequency	215
Fig.5.54	Spectrum, gain and harmonic distortion,	216
	PAE	
Fig.5.55	2-Tone spectrum, gain, TO1, 5 th O1	217
Fig.5.56	2-Tone spectrum, gain, TO1,5 th O1 vs.power	218

Abstract

The ever - increasing demand for radio spectrum in the fast growing area of wireless communication system is driving RF design into higher microwave frequency bands.

The main aim of this thesis is to present design, implement and measure a transceiver RF- front end for ISM-Band wireless communications. The transmitting and receiving parts are isolated by T/R switches. A band pass filter is placed before the low noise amplifier (LNA). A high linearity class —A power amplifier is driven by a preamplifier. A single —ended resistive FET mixer is designed for both up-conversion and down conversion. The design goals are to emphasize low noise figure at first stage, have high gain at the second stage and the conjugate matching is designed between the two stages. Three T/R switches are used, in the RF front — end module to switch between transmitting and receiving modes. Two RF band-pass filters are used the first is between the antenna switch and LNA and the second lies before the mixeras.

A suitable software packages, advanced design system (ADS), Zeland IE3D, Aplac, were used to simulate the performances of the designed separate circuits, by applying the appropriate type of simulation for each circuit. Then we fabricate these circuits and measure its performance.

Circuits included in this transceiver (antenna, band –pass filter, low noise amplifier, power amplifier, power driver, T/R switch, mixer) are designed by the aid of synthesis formula corresponding to each.

In addition to this, suggesting two novel microstrip antenna configurations with very small size and wide bandwidth suitable for mobile communication. These antennas can operate on multimode operation. If switch is carried out for the vias, the operating frequency range can be extended up to 8GHz. Suggesting three novel microstrip RF filters with good performance and very small size as compared to the conventional ones. Building a calibration kit using FR-4 dielectric substrate (cheap and lossy) suitable to operate in the frequency range 0.4 GHz up to 3.5 GHz. Analyzing, designing, fabricating and measureing a power amplifier with its driver, low noise amplifier on the IC level, which causes reduction in size using distributed and lumped techniques.

The required front end of the transceiver was implemented using hybrid integrated circuits, in which the passive components were realized

using thin film technology and photolithographic technique, while the active elements were mounted on the dielectric substrate.

The ADS software package is then used to simulate the performances of the designed separate circuits of the transceiver, by applying the appropriate type of simulation for each circuit. If the given specifications are not satisfied, then one of the optimization techniques, available in this package, is used to reach the optimum response desired. These circuits are connected to each other in two different paths (transmitter and receiver) to represent the transceiver. The performance of the two paths are simulated and optimized to meet the required specifications.

Finally, the circuits constituting the transceiver (antenna, LNA, RF-band pass filter, power amplifier and its driver, T/R switch, IF mixer, IF-filters are fabricated individually except T/R switch, mixer, IF filter due to components limitation. The fabricated circuits were measured using the vector network analyzer ES-8719 in the microstrip department (electronic research institute).

Chapter 1

The ever - increasing demand for radio spectrum in the fast growing area of wireless communication system is driving RF design into higher microwave frequency bands.

The main aim of this thesis is to present design, implement and transceiver RFfront end for ISM-Band wireless measure communications. The transmitting and receiving parts are isolated by T/R switches. A band pass filter is placed before the low noise amplifier (LNA). A high linearity class -A power amplifier is driven by a preamplifier. A single -ended resistive FET mixer is designed for both up- conversion and down conversion. The design goals are to emphasize low noise figure at first stage, have high gain at the second stage and the conjugate matching is designed between the two stages. Three T/R switches are used, in the RF front - end module to switch between transmitting and receiving modes. Two RF band-pass filters are used the first is between the antenna switch and LNA and the second lies before the mixers as shown in Fig.1.1.

A suitable software packages, advanced design system (ADS), Zeland IE3D, Aplac, were used to simulate the performances of the designed separate circuits, by applying the appropriate type of simulation for each circuit. Then we fabricate these circuits and measure its performance.

Circuits included in this transceiver (antenna, band –pass filter, low noise amplifier, power amplifier, power driver, T/R switch, mixer) are designed by the aid of synthesis formula corresponding to each.

In addition to this, suggesting two novel microstrip antenna configurations with very small size and wide bandwidth suitable for mobile communication. These antennas can operate on multimode operation. If switch is carried out for the vias, the operating frequency range can be extended up to 8GHz. Suggesting three novel microstrip RF filters with good performance and very small size as compared to the conventional ones. Building a calibration kit using FR-4 dielectric substrate (cheap and lossy) suitable to operate in the frequency range 0.4 GHz up to 3.5 GHz. Analyzing, designing, fabricating and measureing a power amplifier with its driver, low noise amplifier on the IC level, which causes reduction in size using distributed and lumped techniques.