تأثير بعض المبيحات الحيوية الآمنة بيئياً على بعض أنواع الرحويات الأرضية في محافظتي القليوبية والشرقية

رسالة مقدمة من الطالبة

إيمان كامل خضر حسن

بكالوريوس العلوم الزراعية (شعبة عامة) . كلية الزراعة . جامعة الزقازيق (مشتهر) . ١٩٩١ دبلوم في علوم البيئة معهد الدراسات والبحوث البيئية . جامعة عين شمس . ٢٠٠٣ ماجستير في العلوم البيئية . معهد الدراسات والبحوث البيئية . جامعة عين شمس . ٢٠٠٩

لاستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية

قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة

تأثير بعض المبيحات الحيوية الآمنة بيئياً على بعض أنواع الرخويات الأرضية في محافظتي القليوبية والشرقية

رسالة مقدمة من الطالبة

إيمان كامل خضر حسن

بكالوريوس العلوم الزراعية (شعبة عامة) . كلية الزراعة . جامعة الزقازيق (مشتهر) . ١٩٩١

ماجستير في العلوم البيئية . معهد الدراسات والبحوث البيئية . جامعة عين شمس . ٢٠٠٩

لاستكمال متطلبات الحصول على درجة دكتوراه فلسفة

فى العلوم البيئية

قسم العلوم الزراعية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة: التوقيع

١ – ١.د/محمد سنجاب خالد

أستاذ المبيدات . قسم بحوث مقاومة الآفات للمبيدات

المعمل المركزي للمبيدات الزراعية

٢ - د./أحمد عيد عبد المجيد محجوب

أستاذ الحيوان الزراعي المساعد . قسم وقاية النباتات . كلية الزراعة

جامعة عين شمس

٣- ١.د/قدري وشاحي محمود

أستاذ كيمياء وسمية المبيدات . كلية الزراعة

جامعة عين شمس

٤ - ١.د/مجدى ولسن بولس

وكيل معهد بحوث وقاية النباتات للإرشاد والتدريب

مركز البحوث الزراعية

تأثير بعض المبيحات الحيوية الآمنة بيئياً على بعض أنواع الرحويات الأرضية في محافظتي القليوبية والشرقية

رسالة مقدمة من الطالبة

إيمان كامل خضر حسن

بكالوريوس العلوم الزراعية (شعبة عامة) . كلية الزراعة . جامعة الزقازيق (مشتهر) . ١٩٩١ دبلوم في علوم البيئة معهد الدراسات والبحوث البيئية . جامعة عين شمس . ٢٠٠٣ ماجستير في العلوم البيئية . معهد الدراسات والبحوث البيئية . جامعة عين شمس . ٢٠٠٩

لاستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية قسم العلوم الزراعية البيئية

تحت إشراف:

۱ - ا.د/قدری وشاحی محمود
 أستاذ كیمیاء وسمیة المبیدات . كلیة الزراعة
 جامعة عین شمس

۲ – ۱.د/مجدی ولسن بولس
 وکیل معهد بحوث وقایة النباتات للإرشاد والتدریب
 مرکز البحوث الزراعیة

ختم الإجازة: أجيزت الرسالة بتاريخ / /٢٠١٥ مو افقة مجلس المعهد / /٢٠١٥ مو افقة مجلس الجامعة / /٢٠١٥

EFFECT OF SOME ENVIRONMENTALLY SAFETY BIOPESTICIDES ON SOME LAND MOLLUSCS SPECIES IN QALUBIA AND SHARKIA GOVERNORATES

Submitted By

EmanKamelKhidr Hassan

B.Sc. of Agricultural Sciences (General), Faculty of Agriculture, Zagazig University, 1991
 Diploma of Environmental Sciences, Institute of Environmental Studies & Research,
 Ain Shams University, 2003
 M. Sc. of Environmental Sciences, Institute of Environmental Studies & Research,
 Ain Shams University, 2009

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research AinShamsUniversity

2015

APPROVAL SHEET

EFFECT OF SOME ENVIRONMENTALLY SAFETY BIOPESTICIDES ON SOME LAND MOLLUSCS SPECIES IN QALUBIA AND SHARKIA GOVERNORATES

Submitted By

EmanKamelKhidr Hassan

B.Sc. of Agricultural Sciences (General), Faculty of Agriculture, Zagazig University, 1991
 M. Sc. of Environmental Sciences, Institute of Environmental Studies & Research,
 Ain Shams University, 2009

This thesis Towards a Doctor of Philosophy Degree in Environmental SciencesHas been Approved by:

Name

Signature

1-Prof. Dr. Mohamed Singab Khalid

Prof. of Pesticides Centeral Agriculture Pesticides Laboratory

2-Prof. Dr. Ahmed Eid Abdel-MegeedMahgoob

Associate Prof. of Agriculture Zoology, Department of Plant Protection Faculty of Agriculture Ain Shams University

3-Prof. Dr. Kadry Weshahy Mahmoud

Prof. of Pesticides Chemistry Faculty of Agriculture Ain Shams University

4-Prof.Dr. Magdy Wilson Boules

Deputy Director Extensinon Plant Protection Research Institute Agricultural Research Center

2015

EFFECT OF SOME ENVIRONMENTALLY SAFETY BIOPESTICIDES ON SOME LAND MOLLUSCS SPECIES IN QALUBIA AND SHARKIA GOVERNORATES

Submitted By

EmanKamelKhidr Hassan

B.Sc. of Agricultural Sciences (General), Faculty of Agriculture, Zagazig University, 1991Diploma of Environmental Sciences, Institute of Environmental Studies & Research,

Ain Shams University, 2003

M. Sc. of Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2009

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Agricultural Sciences

Under The Supervision of:

1-Prof. Dr. KadryWeshahy Mahmoud

Prof. of Pesticides Chemistry Faculty of Agriculture Ain Shams University

2-Prof.Dr. Magdy Wilson Boules

Deputy Director Extensinon Plant Protection Research Institute Agricultural Research Center

ACKNOWLEDGEMENT

Firstly, thanks to my **God**.

I wish to express my deepest gratitude to **Prof. Dr. K .W. Mahmoud** Professor of Pesticides Chemistry. Faculty of Agriculture, Ain shams University for his supervision in this work, generous advice, guidance and support the work.

Deep thanks are also due to **Prof. Dr. Magdy Wilson Boules** Head of Research, plant protection Research Institute Agricultural Research Center, for his supervision and valuable suggestion.

Thanks are also due to staff members of Environmental Toxicity Research Unite. Faculty of Agriculture, Ain shams University for this great help during the laboratory studies of this work.

Thanks are also due to Dr. A. E. A. MahgoobAssociateProfessor of Agriculture Zoology, Department of plant protection Faculty of Agriculture, Ain Shams University.

Thanks to the late **Prof. Dr.**Z. H Zidan Professor of Pesticides Chemistry. Faculty of Agriculture, Ain shams University and the late **Prof. Dr**. H.I. El-Deeb. Professor of plant protection Research Institute Agricultural Research Center.

ABSTRACT

The present investigation aimed to aim of the study about deploys certain of Qalubia and Sharkia Governorates, the losses for many corps and the evalutate the effect of some Chemical pesticides and Biopesticides has no toxic residues and invironmental friendly. The obtained results could be summarized as follow:

- **1-**Eobania vermiculata and Monacha obstructa were found widly in crops, Vegetables, and ornamental plants in most districts at Qalubia and Sharkia Governorates.
- **2-**Results of field experiments revealed that *M. obstructa* snails caused a different damage to Guava, Apricot, Peach, Grape, Tomato, Potato, Lettuce, Cabbage, Orange leaves and Tomato fruits. While, *E. vermiculata* snails caused a highly damage on orange leaves.
- **3-**Spinetoram 12%SC, Emamectin benzoate 0.5% EC,Emamectin benzoate 1.92%EC, Lambda-cyhalothrin 10% SC and Methomyl 90%SPused as dipping were estimated against *E. vermiculata*, *M. obstructa* under laboratory conditions.
- **4-**Effect of the tested pesticides on the tested snails under field condition by using of double dose from recommended doses of insecticides (Bio and Chemical pesticides) caused high mortality percent than that the using of recommended doses. we found that the *M. obstructa* was more susceptible than *E. vermiculata*.
- **5-**The effect of tested compounds were on the estimated total protein, alkaline and acid phosphatase and acetylcolinesterase in field and laboratory strains of *E. vermiculata* and *M. obstructa* after different periods of treatments. The results showed that Emamectin benzoate 0.5%EC,Emamectin benzoate 1.92%EC and Lambda-cyhalothrin 10%SC

Decreased significantly the total protein content in both field and laboratory strains of E. vermiculata and M. obstructa the tested species of molluscus after all the periods of treatments. While, Spinetoram 12%SC and Methomyl 90%SP increased significantly the total protein contents in both field and laboratory strain of E. vermiculata and M. obstructa after all periods of treatment .Also he data showed that, Emamectin benzoate 0.5% EC, Emamectin benzoate 1.92% EC, Spinetoram 12% SC, Methomyl 90%SP and Lambda-cyhalothrin 10%SC increased the level of a alkaline phosphatase in both field and laboratory strains of the tested snails after the 48 and 72hr of treatment with the LC₅₀ of the cone/ compounds. While all compound tested increased the (Acid phosphatase) enzymes levels when used against both snail (laboratory and field strain).ButLambdacyhalothrin 10%SC, Methomyl 90%SP reduced the (Acid phosphatase) enzymes levels when used against M. obstructa field strain after 48hr and increased after 72hr while, Lambda -cyhalothrin10%SC reduced the (Acid phosphatase) enzymes levels when used against M. obstructa laboratory strain after 48hr and increased after 72hr.Results showed that all compounds tested reduced the (Acetylcolinesterase) enzymes levels when used against both snail (field and laboratory strain). M. obstructa and E. vermiculata

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
1-Ecological studies	3
1-1-Survey of terrestrial snails	3
1-2 Estimation of damages	9
2-Molluscicidal effect of different pesticides against snails	14
2-1-CHEMICAL PESTICIDS	14
2-2-Bio-pesticides	20
3- Biochemical impact of different compound	24
a- Total protein	24
b- phosphatases and Acetylcholinesterase	28
III-MATERIALS AND METHODS	33
1- Ecological studies	33
1-1- Survey of common land snails	33
1-2- Population (Abundance) dynamics of the land snails M .	
obstructa	33
1-3- Estimation of damage	33
2-Rearing and maintenance of snails	34
3- Laboratory Experiments	35
3-1- pesticides used	35
a- Chemical pesticides	35
b-Biopesticides	37
3-2- Bioassay tests	39
3-3- Leaf- dipping method	39

4- Field Experiments	
5- Biochemical studies	
5-1- Sample preparation	
5-1-1-Determination of total protein	
5-1-2-Determination of acid and alkaline phosphatase activities	
5-1-3- Determination of Acetylcholinesterase activity	
IV-RESULTS	
1-Ecological studies on various land snails infesting different crops	
at Qalubia and Sharkia Governorates	
1-1-Survey studies	
1-2- Abundance dynamics of <i>Monacha obstructa</i> on Clover, Bean	
and Wheat during season(2012/2013 and2013/2014) at Qalubia	
and Sharkia Governorates	
1-3-Estimation of damage caused by certain land snails to different	
host plants	
2-Molluscicidal effect of some pesticides against the tested snails	
2-1-Toxicity of the tested insecticides on <i>Eobania vermiculata</i> and	
Monacha obstructa	
3-Effect of the tested compounds on the tested snails under the	
field conditions	
4-Biochemicalimpacts of certain pesticides on <i>Eobania</i>	
vermiculata and Monacha obstructa	
a- Total protein	
b- Alkaline and acid phosphatases	
c- Acetylcolinesterase	

DISCUSSION	127
CONCLUSION	135
SUMMARY	136
REFERENCES	141
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table(1)	Survey of land snail (Fam., Helicidae) in different regions	
	at Qalubia Governorate	47
Table 2)	Survey of land snail (Fam., Helicidae) in different	
	regions at Sharkia Governorate	47
Table(3)	Abundance dynamics of M. obstructa on Clover, Bean	
	and Wheat during two seasons (2012/2013 and	
	2013/2014) at Qalubia Governorate	48
Table(4)	Abundance dynamics of M. obstructa on Clover, Bean	
	and Wheat during two seasons (2012/2013 and	
	2013/2014) at Sharkia Governorate	49
Table(5)	Damage caused by land snails on various orchard and	
	vegetable crops	50
Table(6)	Toxicity of Emamectin benzoate 0.5%EC on laboratory	
	adult strains of Eobania vermiculata and Monacha	
	obstructa	53
Table(7)	Toxicity of Emamectin benzoate 0.5%EC on field adult	
	strains of Eobania vermiculata and Monacha	
	obstructa	53
Table(8)	Toxicity of Spinetoram 12%SC on laboratory adult	
	strains of Eobania vermiculata and Monacha	
	obstructa	56
Table(9)	Toxicity of Spinetoram 12%SC on field adult strains	
	Of Eobania vermiculata and Monacha obstructa	56
Table(10)	Toxicity of Emamectin benzoate 1.92%EC on	
	laboratory adult strain of Eobania vermiculata and	
	Monacha obstructa	60

Table(11)	Toxicity of Emamectin benzoate 1.92%EC on field	
	adult strains of Eobania vermiculata and Monacha	
	obstructa	60
Table(12)	Toxicity of Lambda-cyhalothrin10%SC on laboratory	
	adult strains of Eobania vermiculata and Monacha	
	obstructa	65
Table(13)	Toxicity of Lambda-cyhalothrin 10% S C on field adult	
	strains of Eobania vermiculata and Monacha	
	obstructa	65
Table(14)	Toxicity of Methomyl 90%SP on laboratory adult	
	strains of Eobania vermiculata and Monacha	
	obstructa	68
Table(15)	Toxicity of Methomyl 90%SP on field adult strains of	
	Eobania vermiculata and Monacha obstructa	68
Table(16)	Toxicity of Eemamectin benzoate 0.5%EC on	
	laboratory and field adult strains of Eobania	
	vermiculata	73
Table(17)	Toxicity of Emamectin benzoate 0.5%EC on laboratory	
	and field adult strains of <i>Monacha</i>	
	obstructa	73
Table(18)	Toxicity of Spinetoram 12%SC on laboratory and field	
` '	adult strains of <i>Eobania vermiculata</i>	76
Table (19)	Toxicity of Spinetoram 12%SC on laboratory and field	
,	adult strains of <i>Monacha obstructa</i>	76
Table(20)	Toxicity of Emamectin benzoate 1.92%EC on	
` /	laboratory and field adultstrains of <i>Eobania</i>	
	vermiculata	80

Table(21)	Toxicity of Emamectin benzoate 1.92%EC on laboratory	
	and field adult strains of <i>Monacha obstructa</i>	
		80
Table(22)	Toxicityof Lambda-cyhalothrin10%SC on laboratory and	
	field adult strains of Eobania vermiculata	85
Table(23)	Toxicity of Lambda-cyhalothrin 10% SC on laboratory	
	and field adult strains of Monacha obstructa	85
Table(24)	Toxicity of Methomyl 90%SP on laboratory and field	
	adult strains of Eobania vermiculata	88
Table(25)	Toxicity of Methomyl 90%SP on laboratory and field	
	adult strains of Monacha obstructa	88
Table(26)	Toxicity of the tested compounds against brown garden	
	snail laboratory (E. vermiculata) and clover snail	
	laboratory strains (M. obstructa) after72hr of	
	treatment	94
Table(27)	Toxicity of the tested compounds against brown garden	
	snail (E. vermiculata) and clover snail field strains (M.	
	obstructa) after72 hr of treatment	95
Table(28)	Toxicity of the tested compounds against brown garden	
	snail laboratory and field strains (E. vermiculata) after	
	72 hr of treatment	98
Table(29)	Toxicity of the tested compounds against clover snail	
	laboratory and Field strains (M. obstracta) after 72 hr of	
	treatment	99
Table (30)	Field performance of the tested compounds against E .	
	vermiculata in ornamental plants	102
Table (31)	Field performance of the tested compounds against M .	
	obstructa in clover.	102