GENETIC IMPROVEMENT OF SOME BACTERIAL STRAINS PRODUCING VITAMIN B₁₂

By

Bigad El-Sayed Mahmoud Ahmed Khalil

B.Sc. Agric. Sci. (Biochemistry), Ain Shams University, 2002M.Sc.Agric.Sci. (Genetics), Ain Shamus University, 2011

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics
Faculty of Agriculture
Ain Shams University

Approval Sheet

GENETIC IMPROVEMENT OF SOME BACTERIAL STRAINS PRODUCING VITAMIN B_{12}

By

Bigad El-Sayed Mahmoud Ahmed Khalil

B.Sc. Agric. Sc. (Biochemistry), Ain Shams University, 2002M.Sc.Agric.Sc. (Genetics), Ain Shamus University, 2011

This thesis for Ph.D. degree has been approved by	by:
Dr. Mohamed Abdel- Baith El- Seehy	•••••
Prof. Emeritus of Genetics, Faculty of A University	griculture, Alexandria
Dr. Khaled Abdel-Aziz Abdel-Aty Soliman	••••••
Prof. of Genetics, Faculty of Agriculture, Ain S	Shams University
Dr. Ashraf Bakry Abdel-Razik	•••••
Prof. of Genetics, Faculty of Agriculture, Ain S	Shams University
Dr. Samir Abdel-Aziz Ibrahim	•••••
Prof. Emeritus of Genetics, Faculty of Ag	griculture, Ain Shams
University	

Date of Examination:

GENETIC IMPROVEMENT OF SOME BACTERIAL STRAINS PRODUCING VITAMIN B₁₂

By

Bigad El-Sayed Mahmoud Ahmed Khalil

B.Sc. Agric. Sci. (Biochemistry), Ain Shams University, 2002M.Sc.Agric.Sci. (Genetics), Ain Shamus University, 2011

Under the supervision of:

Dr. Samir Abdel-Aziz Ibrahim

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Ashraf Bakry Abdel-Razik

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Abd El-Hamid Abd El-Alim Haggran

Researcher Prof. of Genetics, Department of Microbial Genetics, National Research Center

ABSTRACT

Bigad El-Sayed Mahmoud Ahmed Khalil: Genetic Improvement of Some Bacterial Strains Producing Vitamin B_{12} . Unpublished PhD. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2017

The present investigation aims to improving some bacterial strains for producing vitamin B₁₂ through genetic improvement methods i.e induction of mutation and protoplast fusion. In this study 18 bacterial cultures were isolated from three different areas (Menofia - Domiatt-Cairo) and tested for production of vitamin B_{12} . Three isolates which highly producing vitamin B₁₂ are identified as a Pseudomonas strains by some biochemical tests and 16s rDNA technique. The B₁₂ production was determined by spectrophotometric and HPLC methods. Multiple mutagenesis technique by Ethyl Methan Sulphonate (EMS) as a chemical mutagen and Ultraviolet (UV) as a physical mutagen used to increase vitamin B₁₂ production of strains. The strains treated with 200 mM EMS for different exposure time (15, 30, 45, 60 and 90 min). Mutant M 6 from (P. aeruginosa) produced 6 mg/L B12 higher than their parent that produced 4 mg/L that increase the production by 50% in the first step mutation, in the second step mutation the mutant M 6.9 from (P. aeruginosa) produced 12.3 mg/L that increase the production by 207%, and in the third step mutation the mutant M 6.9.9 from (P. aeruginosa) produced 15.5 mg/L that increase the production by 287%.

The strains were treated with UV with different exposure time (30, 60, 90, 120, 150 and 180 sec) at fixed distance of 15 cm from light source, mutant coded P1 (M6.9.9.uv7), giving 20.3 mg/L that increase the production by 408 % in first step mutation. In in the second step mutation, the mutant coded P1 (M6.9.9.uv7.5) was the most B_{12} producer mutant,

giving 21 mg/L showed 425% improvement over the wild-type strain (P1). Intra and inter specific protoplast fusion between auxotrophic mutants isolated after treatment with mutagen was carried out, twenty fusants were successfully obtained, fusant F10 produced 7 mg/L, from intra specific protoplast fusion, fusant F4 produced 7.9 mg/L, from inter specific protoplast. Finally ISSR-PCR marker technique were used to differentiation among parents and its mutants.

Keywords: *Pseudomonas*, vitamin B₁₂, mutation induction, EMS, UV, ISSR.

ACKNOWLEDGEMENT

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully this thesis to appears in its current form.

I would like to express my sincere gratitude to my supervisor **Prof. Dr. Samir Abdel-Aziz Ibrahim** prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University for the continuous support of my M.Sc and Ph.D study and research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Words are not enough to express how grateful I am to him.

I am grateful to my supervisor warmly **Prof. Dr. Ashraf Bakry Abdel-Razik** prof. of Genetics, Faculty of Agriculture, Ain Shams University, whose encouragement and supervision and support from the initial to the final level enabled me to develop and understanding of the introduced and gave me moral support needed to complete the thesis.

The author is greatly indebted to **Dr. Abd El-Hamid Haggran** Professor of Microbial Genetics, Department of Microbial Genetics, National Research Center for suggesting the problem, sincere support, effective, valuable help, encouragement and his help in preparation the manuscript.

Sincere thanks and appreciation to **Dr. Tahany Mohamed Abo Elfath El-kawokgy** Researcher Professor Emeritus of Microbial Genetics, Microbial Genetics Department, National Research Centre for her excellent advises, and her help in writing and reviewing the manuscript.

Thanks should be extended to (ACGEB), Genetics Department members, Faculty of Agriculture, Ain Shams University and Microbial Genetics Department members, National Research Center for their help and continuous encouragement to complete this work.

To my family and my friends, you should know that your support and encouragement was worth more than I can express.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. Vitamin B ₁₂
1.1.Chemistry of B ₁₂
1.2. Forms of B ₁₂
1.3. Vitamin B ₁₂ deficiency
1.4. Physiology of vitamin B ₁₂
1.5. Sources of vitamin B ₁₂ and bioavailability
1.5.1.Vitamin B ₁₂ in animal food
1.5.2.Vitamin B ₁₂ in plant food
1.6.Microbial production of vitamin B ₁₂
1.7. Biosynthetic pathways of vitamin B ₁₂
1.8. Determination of B ₁₂
1.8.1. Microbiological assay methods
1.8.2. Colorimetric methods.
1.8.3. High-performance liquid chromatography (HPLC)
2. Pseudomonas
2.1. Isolation and characterization of pseudomonas isolates
2.2. Molecular analysis (16S rDNA)
3. Genetic approaches for overproduction of B_{12}
3.1. Mutation
3.2. Recombinant DNA technology
MATERIALS AND METHODS
1. Materials
1.1. Bacterial strains
1.2. Primers
1.2.1. 16S rDNA universal primers
1.2.2.Inter Simple Sequence Repeat (ISSR) primers
1.3. Media
1.3.1.LB medium
1.3.2. Nutrient Agar
1.3.3. Minimal glucose

1.3.4. Production medium	25
1.3.5. Pseudomonas agar base	26
1.4. Buffers, reagents and solution	26
1.4.1. For protoplast induction	26
1.4.1.1. Protoplast solution	26
1.4.1.2. Regeneration solution	26
1.4.1.3. P- solution and regeneration solution supplemented	26
1.4.1.4. Lysozyme	26
1.4.1.5. Polyethylene glycol buffer (PEG)	27
1.4.2. DNA buffers	27
1.4.2.1. The Wizard® Genomic DNA Purification Kit	27
1.4.2.2. PCR-Pure Kit (BIORON)	27
1.4.2.3. Agarose gel electrophoresis	27
1.4.2.4. TBE buffer (5X)	27
1.4.2.5. Loading buffer	27
1.4.2.6. Ethedium bromide	28
1.5. Chemical mutagen	28
1.6. DNA marker	29
2. Methods	29
2.1. Isolation of bacteria.	29
2.2. Molecular identification of bacterial isolates	30
2.2.1. DNA extraction	30
2.2.2. PCR amplification of 16s rDNA	30
2.2.3. Agarose gel electrophoreses	30
2.2.4. Phylogenetic analysis	31
2.3. Vitamin B12 assay	31
2.3.1. Spectrophotometric methods	31
2.3.2. HPLC methods	32
2.4. Induction of mutation	33
2.4.1. Induction of mutation using EMS	33
2.4.2. Induction of mutation using UV	33
2.5. Isolation of auxotrophic mutants	34
2.6. Preparation of protoplast	34
2.6.1. Protoplast formation	34

2.6.2. Protoplast fusion	35
2.6.3. Protoplast regeneration	35
2.7. Inter-simple Sequence Repeat (ISSR) PCR	36
2.7.1. DNA extractions	36
2.7.2. Thermal cycling	36
2.7.3. Agarose gel electrophoresis	36
RESULTS AND DISCUSSION	37
1. Isolation and identification of B_{12} producing bacteria	37
1.1. Isolation of B12 producing bacteria	37
1.2. Identification of bacterial isolates	37
1.3. Determination of vitamin B_{12} concentration for	
selected isolates	39
1.4. PCR amplification of the 16S rRNA gene	42
1.5. 16S rDNA gene sequence similarity and Phylogenetic	
analysis	43
2. Induction of mutation	52
2.1. Mutagenesis by EMS	52
2.1.1. First step mutagenesis by EMS	53
2.1.1.1. P. aeruginosa (P1) mutagenesis	53
2.1.1.2. P. fluorescenc (P3) mutagenesis	55
2.1.1.3. <i>P. putida</i> (P11) mutagenesis	58
2.1.2. Second step mutagenesis by EMS	59
2.1.2.1. P. aeruginosa (P1) M6 mutagenesis	60
2.1.2.2. P. fluorescenc (P3) M7 mutagenesis	61
2.1.2.3. P. putida (P11) M5 mutagenesis	63
2.1.3. Third step mutagenesis by EMS	64
2.1.3.1. P. aeruginosa (P1) M6.9 mutagenesis	64
2.2. Mutagenesis by UV irradiation	66
2.2.1. First step mutagenesis by UV	66
2.2.1.1. P. aeruginosa (P1) mutagenesis	67
2.2.1.2. P. fluorescenc (P3) mutagenesis	70
2.2.1.3. P. putida (P11) mutagenesis	72
2.2.1.4. P. aeruginosa (P1) M6.9.9 mutagenesis	74
2.2.2. Second step mutagenesis by UV	76

ARABIC S	SUMMARY
REFEREN	NCES
SUMMAR	Y
and the	eir parents
4.6. A	nalysis of ISSR for the highest B12 producing mutants
4.5. Pr	imer 5
4.4. Pr	imer 4
4.3. Pr	imer 3
4.2. Pr	imer 2
4.1. Pr	imer 1
4. Inte	r-simple sequence repeat (ISSR) PCR
3.2.2.	Inter specific protoplast
3.2.1.	Intra specific protoplast
3.2. Pr	otoplast formation and fusion
fluores	scence mutants
3.1. C	haracterization of auxotrophic P. aeruginosa and P.
3. Prot	oplast fusion
2.2.2.2	2. P. aeruginosa (P1) M6.9.9.uv7 mutagenesis
2.2.2.1	. P. aeruginosa (P1) M.uv6 mutagenesis

LIST OF TABLES

No.		Page
1	Biochemical tests of bacterial isolates	38
2	The relationship between $B_{12} concentration and absorption .$	39
3	B ₁₂ concentration of isolates	41
4	Identification percentage between bacterial isolates and related species in Gen Bank database	51
5	The effect of EMS at different exposure time interval on the survival and auxotrophic mutation rate of P1	53
6	B ₁₂ production of P1 selected mutants	54
7	The effect of EMS at different exposure time interval on the survival and auxotrophic mutation rate of P3	56
8	B ₁₂ production of selected mutants from P3	57
9	The effect of EMS at different exposure time interval on the survival and auxotrophic mutation rate of P11	58
10	B ₁₂ production of selected mutants from P11	59
11	The effect of EMS at different exposure time interval on the survival rate of (P1) M6	60
12	B ₁₂ production of selected mutants from (P1) M6	60
13	The effect of EMS at different exposure time interval on the survival rate of (P3) M7	61
14	B ₁₂ production of selected mutants from (P3) M7	62
15	The effect of EMS at different exposure time interval on the survival rate of (P11) M5	63
16	B ₁₂ production of selected mutants from (P11) M5	63
17	The effect of EMS at different exposure time interval on the survival rate of (P1) M6.9	64
18	B_{12} concentration of selected mutants from (P1) M6.9	65
19	The effect of UV at different exposure time interval on the survival and auxotrophic mutation rate of P1	67
20	B ₁₂ production of selected mutants from P1	69

21	survival and auxotrophic mutation rate of P3	70
22	B ₁₂ production of selected mutants from P3	71
23	The effect of UV at different exposure time interval on the survival and auxotrophic mutation rate of P11	72
24	B ₁₂ production of selected mutants from P11	73
25	The effect of UV at different exposure time interval on the survival rate of (P1) M6.9.9	74
26	B ₁₂ production of selected mutants from (P1) M6.9.9	75
27	B ₁₂ production of selected mutants from (P1) M.uv6	77
28	The effect of UV at different exposure time interval on the survival rate of (P1) M6.9.9.uv7	78
29	B ₁₂ concentration of selected mutants from P1M6.9.9.uv7	78
30	Protoplast fusion between <i>P. aeruginosa</i> . (asn-) & <i>P. fluorescence</i> .(gln-)	83
31	B12 production of selected fusants from <i>P. aeruginosa</i> (asn-) & <i>P. fluorescence</i> (gln-)	85
32	Protoplast fusion between <i>P. aeruginosa</i> . (asn-) & <i>P. aeruginosa</i> . (arg -).	87
33	B_{12} concentration of selected fusants from <i>P. aeruginosa</i> (asn-) & <i>P. aeruginosa</i> (arg-).	88
34	Polymorphism generated by primer 1 for parents and its high B ₁₂ producing mutants	90
35	Polymorphism generated by primer 2 for parents and its high B_{12} producing mutants	91
36	Polymorphism generated by primer 3 for parents and its high B ₁₂ producing mutants	93
37	Polymorphism generated by primer 4 for parents and its high B ₁₂ producing mutants	94
38	Polymorphism generated by primer 5 for parents and its high B_{12} producing mutants.	95
39	Similarity percentages between highest B ₁₂ producing mutants and their parents	97

LIST OF FIGURES

No		Page
1	The chemical structure of cobalamin (vitamin B ₁₂)	5
2	Biosynthetic pathways of vitamin B ₁₂	15
3	Illustration of mutagenic effect of EMS on the nitrogen base	
	Guanine	28
4	1Kb DNA ladder map.	29
5	Standard curve of B ₁₂	40
6	Standard B ₁₂ diagram by HPLC	41
7	B ₁₂ concentration diagram of isolates P3 by HPLC	41
8	Agarose gel electrophoreses of 16S rRNA amplification of	
	isolates. lane M, 1 kb DNA ladder	42
9	Forward DNA sequence of 16S rRNA of isolate P1	43
10	Reverse DNA sequence of 16S rRNA of isolate P1	44
11	Overlap DNA sequence of 16S rRNA of isolate P1.	44
12	Phylogenetic tree based on 16S rRNA sequence of isolate P1	
	and selected pseudomonas aeruginosa strain from the database	
	using BLAST programe.	45
13	Forward DNA sequence of 16S rRNA of isolate P3	45
14	Reverse DNA sequence of 16S rRNA of isolate P3	46
15	Overlap DNA sequence of 16S rRNA of isolate P3.	46
16	Phylogenetic tree based on 16S rRNA sequence of isolate P3	
	and selected Pseudomonas fluorescens strain from the database	
	using BLAST programe.	47
17	Forward DNA sequence of 16S rRNA of isolate P4.	47
18	Reverse DNA sequence of 16S rRNA of isolate P4	48
19	Overlap DNA sequence of 16S rRNA of isolate P4.	48
20	Phylogenetic tree based on 16S rRNA sequence of isolate P4	
	and selected Pseudomonas fluorescens strain from the database	
	using BLAST programe.	49
21	Forward DNA sequence of 16S rRNA of isolate P11	49
22	Reverse DNA sequence of 16S rRNA of isolate P11.	50
23	Overlap DNA sequence of 16S rRNA of isolate P11	50
24	Phylogenetic tree based on 16S rRNA sequence of isolate P11	

VIII

	and selected Pseudomonas putida strain from the database using	
	BLAST programe.	51
25	The effect of EMS dose at different time interval on the	
	survival and auxotrophic mutation rate of P1	54
26	Diagram B12 concentration of (P1) M6 by HPLC	55
27	The effect of EMS dose at different time interval on the	
	survival and auxotrophic mutation rate of P3.	56
28	B ₁₂ concentration diagram of (P3) M7 by HPLC	57
29	The effect of EMS dose at different time interval on the	
	survival and auxotrophic mutation rate of P11	58
30	B ₁₂ concentration diagram of (P1) M6.9 by HPLC.	61
31	B ₁₂ concentration diagram of (P3) M7.3 by HPLC	62
32	B ₁₂ concentration diagram of (P1) M6.9.9 by HPLC	65
33	The effect of UV dose at different time interval on the survival	
	and auxotrophic mutation rate of P1	68
34	B ₁₂ concentration diagram of (P1)Muv6 by HPLC	69
35	The effect of UV dose at different time interval on the survival	
	and auxotrophic mutation rate of P3.	71
36	The effect of UV dose at different time interval on the survival	
	and auxotrophic mutation rate of P11.	73
37	The effect of UV dose at different time interval on the survival	
	rate of (P1) M6.9.9	75
38	B ₁₂ concentration diagram of (P1)M6.9.9 uv7 by HPLC	76
39	B ₁₂ concentration diagram of (P1) M6.9.9 uv7.5 by HPLC	79
40	The form of prototroph (large) and auxotroph (small) colonies	81
41	B ₁₂ concentration diagram of Fusant F10 by HPLC	85
42	B ₁₂ concentration diagram of Fusant F4by HPLC	88
43	Agarose (1.8%) gel electrophoresis of ISSR-PCR products for	
	primer 1 of mutants and their parents.	89
44	Agarose (1.8%) gel electrophoresis of ISSR-PCR products for	
	primer 2 of mutants and their parents	91
45	Agarose (1.8%) gel electrophoresis of ISSR-PCR products for	
	primer 3 of mutants and their parents.	92
46	Agarose (1.8%) gel electrophoresis of ISSR-PCR products for	

	primer 4 of mutants and their parents	94
47	Agarose (1.8%) gel electrophoresis of ISSR-PCR products for	
	primer 5 of mutants and their parents.	95
48	Dendrogram of ISSR based on unweighted pair group method	
	with arithmetic averages algorithm (UPGMA) for highest B_{12}	
	producing mutants and their parents.	96