Cholestatic Disorders of Infancy: a Descriptive Study in the Pediatric Hepatology Unit at Cairo University Children's Hospital

Thesis

Submitted for Fulfillment of the Master Degree in **Pediatrics**

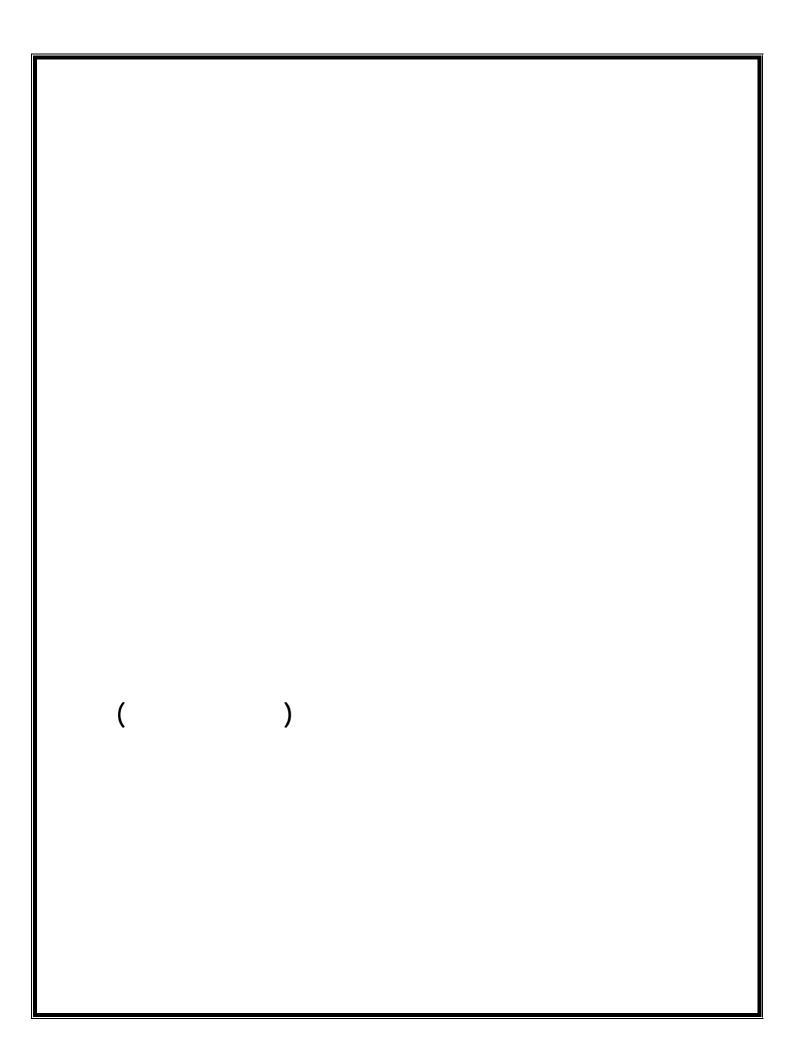
 $\mathcal{B}y$

Suha Majeed Mohammed M.B., B.Ch

Supervised By

Prof. Dr. Rokaya Mohammed EL-Saied

Professor of Pediatrics Faculty of Medicine, Cairo University


Prof. Dr. Dalia Ahmed Khairy Abd ElLatif

Assistant Professor of Pediatrics Faculty of Medicine, Cairo University

Dr. Khalil Abdel Khalik Mohammed

Lecturer of Pediatrics Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2012

ABSTRACT

This a descriptive study of the clinical profile of patient presenting with

cholestatic disorders of infancy through reviewing the medial record of

the Pediatric Hepatology Unit at Cairo University Children's Hospital

during the period from June 2009 to June 2010.

In our study 134 infants suffering from cholestasis presented at age from

(4-270) days to our medical attention.

Jaundice was the most frequent symptom, representing (97%) of all

symptom, biopsy was done for 98 cases in which the neonatal Hepatitis

was the most frequent diagnosis (36.6%).

EHBA was the most common diagnosis (28.4%) of cases.

Key words: cholestasis, infant, jaundice

First, thanks GOD for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

It was an honor to work under the supervision of eminent professors, who lent me their whole hearted support and immense facilities as is their usual with their juniors. To them, I owe more than I can record.

I would like to express my deepest gratitude and highest appreciation to **Professor Dr. Rokaya Mohammed EL-Saied,** Professor of Pediatrics, Faculty of Medicine, Cairo University, for her continuous encouragement, generous support and unlimited help,

I would like to express my sincere gratitude to **Professor Dr.**Dalia Ahmed Khairy Abd Ellatif, Assistant Professor of Pediatrics,
Cairo University, who supervised this work with great interest and
who gave me unlimited support and inspiring guidance throughout
the work.

Since gratitude also expressed to **Dr. Khalil Abdel Khalik Mohammed**, Lecturer of Pediatrics, Faculty of Medicine, Cairo

University for his encouragement, support and generous help.

I would like to offer my deepest gratitude to all my senior staff, and my colleagues in the Department of Pediatrics, Cairo University for their help during preparation of this work.

Last but not least, I thank my Mother and Husband for their invaluable care and unlimited support

CONTENTS

	Page
List of Abbreviations	III
List of Tables.	V
List of Figures	VII
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE:	
Chapter I: Cholestatic Disorders of Infancy	4
Chapter II: Specific Cholestatic Disorders	21
SUBJECTS AND METHODS	66
RESULTS	69
DISCUSSION	90
CONCLUSION	97
RECOMMENDATION	98
SUMMARY	99
REFERENCES	102
APPENDIX	
ARABIC SUMMARY	

List of Abbreviations

AAT : Alpha-1-antitrypsin deficiency

AGS : Algaille syndrome

ALT : Alanine amino trasnferase

ASBT : Apical sodium bile acid transporter

AST : Aspartate aminotrasferase

BA : Biliary atresia

BASM : Biliary atresia splenic malformation syndrome

BRIC : Benign recurrent intrahepatic cholestasis

BSEP : Bile salt export pump

CC : Choledochal cyst

CFTR : Cystic fibrosis transmembrane conductance regulator

CMV : Cytomegalovirus CSF : Cerebrospinal fluid

DNA : Deoxy riboneuclic acid

EHBA : Extrahepatic billiary atersia

ERCR : Endoscopic retrograde cholangiopancreatography

ESCLD : End-stage cholestatic liver disease

GGT : Gamma glutamyl traspeptidase

HBsAg : Hepatitis B surface antigen

HBV : Hepatitis B virusHCV : Hepatitis C virusHHV : Human herpes virus

HIV : Human immunodeficiency virus

HPV : Human papilloma virus

LDLT : Liver donor liver transplantation

MCTs : Medium chain triglycerides

MDR : Multidrug resistance

MRC : Magentic resonance cholangiography

NH : Neonatal hepatitis

NP : Niemann-pick disease

PC : Prothrombin concentration
PCR : Polymerase chain reaction

PFIC : Progressive familial intrahepatic cholestasis

PT : Prothrombin time

RNA : Riboneuclic acid

SLT : Splitliver transplantation

TC sign : Triangular cord sign

TORCH : Toxoplasma Rubella Cytomegalovirus and herpes

UDCA : Ursodeoxycholic acid

VDRL : Venereal disease research laboratory

LIST OF Tables

Table No.	Title	Page
1.	Causes of cholestasis	8
2.	History for the differential diagnosis of infants with conjugated hyperbilirubinemia	10
3.	Physical findings to consider for the differential diagnosis of infants with conjugated hyperbilirubinemia	11
4.	Initial work-up of neonatal cholestasis	12
5.	Treatable causes of neonatal cholestasis	16
6.	Treatments for the pruritus on cholestasis	17
7.	Fat soluble vitamins in cholestasis	19
8.	Anatomical types of biliary atresia (BA)	23
9.	Classification of choledochal cysts	33
10.	Characters of PFIC2-3	48
11.	Causes of bile duct paucity	51
12.	Summary of molecular genetic testing used in Alagille syndrome	56
13.	Liver Disease Associated with alpha-1-Antitrypsin Deficiency	60
14.	Demographic data of studied group	69
15.	Consanguinity of the studied group	69
16.	Clinical features of the studied patients	70
17.	Laboratory data of studied group	72
18.	US findings in the studied patients (n=119)	73
19.	Biopsy findings in studied patients	74
20.	Frequency of definitive diagnosis	75
21.	Treatment given to the studied group	76

Table No.	Title	Page
22.	Outcome of the studied patients	77
23.	Classification of medical and surgical cholestasis according to biopsy	78
24.	Demographic data of studied patient	79
25.	Residence of the studied groups	80
26.	Comparison in clinical feature between medical and surgical cases	81
27.	Laboratory result in medical and surgical cases	82
28.	Comparison of ultrasound finding in the studied group	83
29.	Site of bleeding in relation to cholestatic type	84
30.	Comparison in αFP in relation to cholestatic type	85
31.	Comparison in GGT level between medical and surgical	85
32.	Treatment given to the studied patient	86
33.	Postoperative treatment given to the surgical patient	86
34.	Outcome in relation to cholestasis type	87
35.	Postoperative feature in the studied patient	87

List of Figures

Fig. No.	Title	Page
1.	Types of Biliary atresia	22
2.	Triangular cord (a) transverse and (b) longitudinal	28
3.	Different types of choledocal cysts	33
4.	Progressive familial intrahepatic cholestasis (PFIC): Types, related genes, and transport defects.	45
5.	Clinical features of the studied patients	70
6.	U/S finding in studied patients	74
7.	Frequency of definitive diagnosis	75
8.	Outcome of studied patients	77
9.	Classification of medical and surgical cholestasis according to biopsy	78
10.	Residence of the studied groups	80
11.	Comparison of ultrasound finding in studied group	83

INTRODUCTION

Bile secretion is a complex metabolic process, dependent on multiple structural and functional components in hepatocytes and bile duct cells. Its primary functions are to eliminate potentially toxic lipophilic compounds from the body, to excrete cholesterol, and to facilitate the digestion and absorption of lipids and lipid-soluble vitamins in the intestine (*Boyer and Nathanson*, 1999).

Cholestasis may be defined physiologically as measurable decrease in bile flow, pathologically as the histological presence of bile in liver cells and biliary system and clinically as the accumulation in blood and extra hepatic tissue of substance normally exerted in bile (e.g. bilirubin, bile acid and cholesterol) (*Suchy*, 2007).

Causes of neonatal cholestasis are long and diverse but the responses of newborn liver, either physiological or anatomical, are limited. This is because the ability of the developing liver of responding in the face of a varity of insulate are limited (*Balistreri*, 1985).

Thus infant with neonatal cholestasis usually present with variable degrees of jaundice, dark urine, pale stools and enlarged liver, all of which are non specific features of neonatal cholestasis (*McLin et al.*, 2004).

Biliary atresia is an important cause of neonatal cholestasis. Early diagnosis and surgery for biliary atresia is important to ensure higher success rates for surgery and better long- term outcomes (*Hartley*, 2009).

Bile duct paucity syndromes include Alagille syndrome in which the main clinical features are: Cholestasis, characteristics facies (e.g. Broad forehead, deep set eyes), skeletal abnormalities, cardiac disease (e.g., peripheral pulmonary stenosis) (*Alagille*, 1985).

The outcome of Alagille syndrome depends on the hepatic and extra hepatic disease. The majority of children have a benign course. Most estimates put overall mortality at 20-25% (*Roberts*, 2008).

Progressive familiar intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive liver disorder of childhood in which cholestasis of hepatocellular origin often present in the neonatal period or the first days of life and leads to death from liver failure at age ranging from infancy to adolescent (*Jacqemin and Hadchouel*, 1999).

In most patients, disease progresses inevitable to hepatic failure although there may be attacks followed by transient improvement. Thus affected patients are good candidates for liver transplantation particularly when they have been appropriately managed avoiding problems such as the neuropathy associated with vitamin E deficiency (*De Vree et al.*, 1998).

AIM OF WORK

The objective of this study is to describe the clinical profile of patients presenting with cholestatic disorder of infancy through reviewing of medical data of the Pediatric Hepatology Unit at Cairo University Children Hospital with following objectives:

- **1-** To identify the prevalence of cholestatic disorders of infancy among infant and children with liver disease in the Pediatric Hepatology Unit at Cairo University Children Hospital.
- **2-** To identify the etiologies of Cholestasis and familiar conditions namely PFIC.
- **3-** To identify the clinical profile of the patients with special consideration to the age of presentation, course of disease, medical and surgical management and its effect on outcome.
- **4-** To identify candidates for liver transplantation among patients.
- 5- To construct a detailed clinical data sheet that can be a basis for data collections for similar causes in the future.

Chapter I

CHOLESTATIC DISORDERS OF INFANCY

Mechanism of cholestasis

Bile is a vital secretion essential for intestinal digestion and absorption of lipids. Bile is an important route of elimination for environmental toxins, carcinogens, xenobiotics include drugs, and their metabolites. Bile secretion is also a major route for endogenous compounds and metabolic products such as cholesterol, bilirubin and steroid hormones (*Nathanson and Boyer*, 1991).

Bile secretion is an osmotic process driven predominantly by the active excretion of organic solutes into bile canaliculi, followed by the passive inflow of water, electrolytes, and non-electrolytes (e.g. glucose) from hepatocyes and across semipermeable tight junctions. The main organic bile solutes of bile are bile salts, phospholipids and cholesterol, which form mixed micelles in bile. Extrusion of bile salts from hepatocytes is also critical for liver cell viability, as the intracellular accumulation of bile salts may lead to cell death by apoptosis and/or necrosis (*Higuchi and Gores*, 2003).

Molecular Determinants of Cholestasis:

Bile secretion is mediated by several ATP binding cassette (ABC) transporters located in the canalicular membrane of hepatocytes (*Meier and Stieger*, 2002).

Among these ABC transporters, the bile salt export pump (BSEP, or ABCB11) represents the primary if not the sole transport system for the canalicular excretion of bile salts (*Wang et al.*, 2001).

Cholestasis results when bile production in the liver is impaired, either from defect in canalicular secretion from the hepatocyte or from primary diseases of cholangiocytes, cholestatic disorder in hepatocytes arise from genetic mutation, or following drug, toxic, or viral injury (*Trauner et al.*, 1998).

Cholangiocytic genetic disorders producing cholestasis include cystic fibrosis, Alagille's syndrome and progressive familial intrahepatic cholestasis (PFIC) of infancy, which represents a group of inherited cholestatic diseases that are classified into three subtypes. One of these subtypes, PFIC II, is associated with mutation in the BSEP gene (*Jansen et al.*, 1999).

PFIC I and PFIC III are caused by mutation in the genes encoding FICI (ATP8B1) MDR3 (ATCB4), respectively (*De Vree et al.*, 1998).

Irrespective of whether cholestasis results from genetic or acquired disorders of hepatocytes or cholangiocytes, the end result is altered expression and function of several molecular determinants of bile formation and enterohepatic circulation of bile salts (*Boyer*, 2002).

Manifestations of Cholestatic Liver Disease in Infants:

Jaundice is the most overt physical sign of liver disease and occurs more commonly in the neonatal period than at any other time of life.