

Fault Classification in Transmission Lines Using Artificial Intelligence Techniques

M.Sc. Thesis

By

Eng. Mohamed Ramadan Abdel-Atty

B.Sc., Ain Shams University, 2007

Submitted in partial fulfillment of the requirements for the M.Sc. degree in electrical engineering

Supervised By

Prof. Dr. Almoataz Youssef Abdelaziz Dr. Saeed Fouad Mekhamar Dr. Amr Mohamed Ibrahim

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

قسم هندسة القوى والآلات الكهربية

عنوان الرسالة تصنيف الأخطاء في خطوط النقل بإستخدام طرق الذكاء الاصطناعي

رسالة مقدمة من مهندس/ محمد رمضان عبد العاطي يونس الحصول على درجة الماجستير في الهندسة الكهربية

تحت اشراف

أ.د/ المعتز يوسف عبد العزيز قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس

د/ سعيد فؤاد مخيمر

قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس د/ عمرو محمد إبراهيم

قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس

جامعة عين شمس كلية الهندسة قسم هندسة القوى والآلات الكهربية

تقرير موافقة على رسالة لدرجة الماجستير

اسم الطالب: محمد رمضان عبد العاطى يونس.

عنوان الرسالة: تصنيف الأخطاء في خطوط النقل بإستخدام طرق الذكاء

الاصطناعي.

اسم الدرجة: الماجستير في الهندسة الكهربية (قوى وآلات).

لجنة الاشراف:

أ.د/ المعتز يوسف عبد العزيز

قسم هندسة القوى والآلات الكهربية

كلية الهندسة - جامعة عين شمس

د/ سعيد فؤاد مخيمر

قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس

د/ عمرو محمد إبراهيم

قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس

تاريخ البحث: / /

الدراسات العليا

ختم الاجازة: اجيزت الرسالة بتاريخ: / /

موافقة مجلس الكلية: موافقة مجلس الجامعة:

/ /

جامعة عين شمس كلية الهندسة قسم هندسة القوى والآلات الكهربية

تقرير موافقة على رسالة لدرجة الماجستير

اسم الطالب: محمد رمضان عبد العاطى يونس.

عنوان الرسالة: تصنيف الأخطاء في خطوط النقل بإستخدام طرق الذكاء

الاصطناعي.

اسم الدرجة: الماجستير في الهندسة الكهربية (قوى وآلات).

لجنة المناقشة والحكم

الاسم والوظيفة

أ.د/ السيد حسن شهاب الدين

استاذ قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة حلوان

أ.د/ متولي عوض الشرقاوي

استاذ قسم هندسة القوى والآلات الكهربية كلية الهندسة - جامعة عين شمس

أ.د/ المعتز يوسف عبد العزيز

استاذ قسم هندسة القوى والآلات الكهربية كلية الهندسة – جامعة عين شمس (عن المشرفين)

Abstract

Power transmission lines are the vital links in power systems providing the essential continuity of service from generating plants to the end users. To maintain stability in a power system it is urgent that any fault in the transmission system be identified by protective relays and the faulted line be isolated from the network with minimal delay.

This thesis presents a protection scheme used for classification of faults on the series compensated transmission line using Support Vector Machine (SVM). The fault classification task is divided into four separate subtasks (SVM_a, SVM_b, SVM_c and SVM_g), where the state of each phase and ground is determined by an individual SVM. The network for each phase is supplied by its respective current samples or voltage and current samples, whereas the decision of ground network is based only on the ground current.

The proposed technique has been trained and tested through computer simulation studies for a typical two machine power system model implemented in PSCAD/EMTDC package. The sampling rate is 20 samples per cycle of power frequency. The proposed method uses postfault half cycle (ten samples) for fault classification. The SVMs are trained with different kernel functions with different parameter values to get the most optimized model. Simulation studies have been considered for different operating conditions, including wide variations of load angle, fault inception angle, fault resistance and fault location.

The performance of the proposed method is investigated using the computer simulation which does not exactly match the field data. This is because the incoming data will be affected by the transducers and environmental noise. Therefore, the proposed technique is also tested

with superimposed noise test data. This ensures robustness of the proposed SVM algorithm.

In addition to series compensated transmission line protection studies, the thesis also includes fault analysis of high voltage transmission line without compensation.

The results presented in this thesis confirm the feasibility of the proposed protection scheme.

Keywords: Distance protection, Fault classification, Overcurrent protection, Series compensated transmission line, Support vector machine.

Acknowledgement

I thank God, for wisdom and knowledge that He has blessed me. You made me strong, You gave me reasons to go and make the best out of me. You are the reason why I am here.

I would most like to thank my supervisors: Professor Almoataz Youssef Abdelaziz, Dr. Saeed Fouad Mekhamar and Dr Amr Mohamed Ibrahim, for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and major influence in my academic life. I could not possibly list all that I have learned from them.

I am grateful for my parents and my wife, who helped me through all these. Thank you for supporting me in every way.

Mohamed Ramadan Abdel-Atty

Cairo, 2011

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiii
1. INTRODUCTION	1-15
1.1- Power System Protection.	1
1.1.1- Functions of Protection System.	1
1.1.2- Protection Zones.	3
1.1.3- Power System Protective Relay.	3
1.2- Development of Power System Relaying	4
1.3-Transmission Line Protection.	5
1.3.1- Overcurrent Protection.	6
1.3.2- Distance Protection.	7
1.3.3- Pilot Protection.	9
1.3.3.1- Differential Protection.	10
1.3.3.2- Phase Comparison Protection.	11
1.3.3.3- Directional Protection.	11
1.4- Protection of Series Compensated Line.	12
1.5- Thesis Objective.	14
1.6- Thesis Structure.	14
2. SERIES-COMPENSATED TRANSMISSION LINE	
PROTECTION	16-32
2.1- Series-Compensated Transmission Line.	16
2.1.1- Introduction.	16
2.1.2- Capacitor Protection Scheme.	17
2.1.3- Voltage and Current Inversion.	21
2.1.4- Distant Reach Measurement.	23
2.1.5- Subsynchronous Resonance (SSR).	25
2.2- Protection Algorithms for Series Compensated	
Lines.	26
3. SUPPORT VECTOR MACHINES	33-49
3.1-Empirical Risk Minimization (ERM) and	
Structural Risk Minimization (SRM).	33
3.2- Support Vector Machines for Binary	
Classification.	38
3.2.1- Formal Explanation of SVM.	38
3.2.2- Soft Margin.	44
3.2.3- The Nonlinear Classifier.	46
3.3- Use of SVM.	48

	3.4-	Training	Methods	Used:	in the	Research	Work
--	------	-----------------	---------	-------	--------	----------	------

4. FAULT CLASSIFICATION OF SERIES-	
COMPENSATED TRANSMISSION LINE	50-105
4.1- Introduction.	50
4.2- Power System Model.	51
4.3- Proposed Protection Algorithm Using SVM.	58
4.3.1- SVMs for Fault Classification.	61
4.3.1.1-Overcurrent Protection based	
Scheme Results	62
4.3.1.2-Distance Protection based	
Scheme Results	74
4.3.2- SVMs for Ground Detection.	86
4.4- Testing the Proposed Protection Algorithm with	
Noise.	97
4.5- SVM based Overcurrent Protection for	
Transmission Line.	98
4.5.1- Power System Under Study.	98
4.5.2- Support Vector Machine Training and	
Testing.	99
4.5.2.1- SVMs for Fault Classification.	99
4.5.2.2- SVM for Ground Detection.	103
4.6- Comparison with other Existing Techniques.	104
5. CONCLUSIONS	106
J. CONCECSIONS	100
REFERENCES	108
REFERENCES	108
PUBLICATIONS	115
	113
APPENDIX	116

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

AI Artificial Intelligence
ANN Artificial Neural Network

BPNN Back Propagation Neural Network
CPNN Counter Propagation Neural Network

CT Current Transformer

DC Direct Current

EHV Extra High Voltage

EMI Electromagnetic InterferenceERM Empirical Risk MinimizationFMNN Feature Map Neural Network

FNN Fuzzy Neural Network

GANN Genetic Algorithm Neural Network

HV High Voltage

MOV Metal Oxide Varistor
PT Potential Transformer
QP Quadratic Programming
RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

SLT Statistical Learning Theory
SRM Structural Risk Minimization
SSR Subsynchronous Resonance
SVM Support Vector Machine

ZnO Zinc Oxide

LIST OF FIGURES

Fig. 1.1	Protection zones of a power system	3
Fig. 1.2	Types of impedance relay characteristics	8
Fig. 1.3	One-line diagram of a faulty power system with	
	distance relay	8
Fig. 1.4	Three-zone stepped distance protection	9
Fig. 2.1	Overvoltage protection scheme for a series	
	capacitor	18
Fig. 2.2	V-I characteristics of the MOV	19
Fig. 2.3	The negative effect of series capacitor protection	
	scheme on transmission line protection	20
Fig. 2.4	Voltage inversion and current inversion	22
Fig. 2.5	Effect of series capacitor on the reach of a Mho	
	relay	24
Fig. 3.1	VC dimension example	37
Fig. 3.2	Principle of structural risk minimization and	
	illustration of the generalization bound depending	
	on the VC dimension	37
Fig. 3.3	The optimal separating hyperplane	38
Fig. 3.4	Two of many separating lines	39
Fig. 3.5	Maximum margin hyperplane and margins for a	
	SVM trained with samples from two classes	41
Fig. 3.6	Inseparable case in a two-dimensional space	44
Fig. 3.7	Mapping of the input space to a high dimensional	
	feature space	47
Fig. 3.8	A process description for SVM model	
	development	48
Fig. 4.1	Power system model	52
Fig. 4.2	Current waveforms for a-g fault at 37.5% of the	
	line with fault inception angle (FIA) = 90° , R_F = 40	
	Ω and load angle (δ) = 20°	53
Fig. 4.3	Current waveforms for ac-g fault at 62.5% of the	
	line with fault inception angle (FIA) = 64.8° ,	
	$R_F=50 \Omega$ and load angle $(\delta)=10^{\circ}$	53
Fig. 4.4	Current waveforms for ab-g fault at 100% of the	
	line with fault inception angle (FIA) = 185.4° ,	
	$R_F=30 \Omega$ and load angle $(\delta)=15^{\circ}$	54
Fig. 4.5	Series capacitor arrangement	55
Fig. 4.6	Line current for single phase fault	56
Fig. 4.7	Capacitor current for single phase fault	56
Fig. 4.8	MOV current for single phase fault	56
Fig. 4.9	Capacitor voltage for single phase fault	57
Fig. 4.10	MOV energy for single phase fault	57
Fig. 4.11	The proposed overcurrent protection scheme	59
Fig. 4.12	The proposed distance protection scheme	59

Fig. 4.13	Fault classification accuracy of overcurrent test set	
T: 444	vs. $\log(C)$ for $n=2$	62
Fig. 4.14	Fault classification accuracy of overcurrent test set	(2
Fig. 4.15	vs. log(C) for n=3 Foult elegification accuracy of ever-current test set	63
Fig. 4.15	Fault classification accuracy of overcurrent test set vs. $log(C)$ for $n=4$	63
Fig. 4.16	Fault classification accuracy of overcurrent test set	03
rig. 4.10	vs. $log(C)$ for $n=5$	63
Fig. 4.17	Fault classification accuracy of overcurrent test set	03
116. 4.17	vs. $log(C)$ for $n=6$	64
Fig. 4.18	Fault classification accuracy of overcurrent test set	01
116. 4.10	vs. $log(C)$ for $n=7$	64
Fig. 4.19	Fault classification accuracy of overcurrent test set	0.1
g,	vs. $\log(C)$ for $n=8$	64
Fig. 4.20	Fault classification accuracy of overcurrent test set	
8	vs. $\log(C)$ for $\gamma = 0.4$	65
Fig. 4.21	Fault classification accuracy of overcurrent test set	
8	vs. $\log(C)$ for $\gamma = 0.6$	65
Fig. 4.22	Fault classification accuracy of overcurrent test set	
G	vs. $\log(C)$ for $\gamma = 0.8$	65
Fig. 4.23	Fault classification accuracy of overcurrent test set	
	vs. $\log(C)$ for $\gamma = 1.0$	66
Fig. 4.24	Fault classification accuracy of overcurrent test set	
	vs. $log(C)$ for $\gamma = 1.2$	66
Fig. 4.25	Fault classification accuracy of overcurrent	
	training set vs. $log(C)$ for $n=2$	66
Fig. 4.26	Fault classification accuracy of overcurrent	
	training set vs. $log(C)$ for $n=3$	67
Fig. 4.27	Fault classification accuracy of overcurrent	
	training set vs. $log(C)$ for $n=4$	67
Fig. 4.28	Fault classification accuracy of overcurrent	
	training set vs. $log(C)$ for $n=5$	67
Fig. 4.29	Fault classification accuracy of overcurrent	60
F: 4.20	training set vs. $\log(C)$ for $n=6$	68
Fig. 4.30	Fault classification accuracy of overcurrent	60
E:~ 4.21	training set vs. $\log(C)$ for $n=7$	68
Fig. 4.31	Fault classification accuracy of overcurrent training set vs. $log(C)$ for $n=8$	68
Fig. 4.32	Fault classification accuracy of overcurrent	08
rig. 4.32	training set vs. $\log(C)$ for $\gamma=0.4$	69
Fig. 4.33	Fault classification accuracy of overcurrent	0)
11g. 1.33	training set vs. $\log(C)$ for $\gamma=0.6$	69
Fig. 4.34	Fault classification accuracy of overcurrent	0)
	training set vs. $\log(C)$ for $\gamma=0.8$	69
Fig. 4.35	Fault classification accuracy of overcurrent	
G	training set vs. $\log(C)$ for $\gamma=1.0$	70

Fig. 4.36	Fault classification accuracy of overcurrent	
	training set vs. $\log(C)$ for $\gamma=1.2$	70
Fig. 4.37	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $n=2$	74
Fig. 4.38	Fault classification accuracy of distance test set vs.	
	log(C) for $n=3$	74
Fig. 4.39	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $n=4$	75
Fig. 4.40	Fault classification accuracy of distance test set vs.	
	log(C) for $n=5$	75
Fig. 4.41	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $n=6$	75
Fig. 4.42	Fault classification accuracy of distance test set	
	vs. $log(C)$ for $n=7$	76
Fig. 4.43	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $n=8$	76
Fig. 4.44	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $\gamma=0.4$	76
Fig. 4.45	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $\gamma=0.6$	77
Fig. 4.46	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $\gamma=0.8$	77
Fig. 4.47	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $\gamma=1.0$	77
Fig. 4.48	Fault classification accuracy of distance test set vs.	
	$\log(C)$ for $\gamma=1.2$	78
Fig. 4.49	Fault classification accuracy of distance training	
	set vs. $log(C)$ for $n=2$	78
Fig. 4.50	Fault classification accuracy of distance training	
	set vs. $log(C)$ for $n=3$	78
Fig. 4.51	Fault classification accuracy of distance training	
	set vs. $log(C)$ for $n=4$	79
Fig. 4.52	Fault classification accuracy of distance training	
	set vs. $\log(C)$ for $n=5$	79
Fig. 4.53	Fault classification accuracy of distance training	
77. 4.74	set vs. $\log(C)$ for $n=6$	79
Fig. 4.54	Fault classification accuracy of distance training	0.0
	set vs. $\log(C)$ for $n=7$	80
Fig. 4.55	Fault classification accuracy of distance training	0.0
D: 4.74	set vs. $\log(C)$ for $n=8$	80
Fig. 4.56	Fault classification accuracy of distance training	0.0
Tet. 4.55	set vs. $\log(C)$ for $\gamma=0.4$	80
Fig. 4.57	Fault classification accuracy of distance training	0.1
T: 4.50	set vs. $\log(C)$ for $\gamma=0.6$	81
Fig. 4.58	Fault classification accuracy of distance training	0.1
	set vs. $\log(C)$ for $\nu=0.8$	81

Fig. 4.59	Fault classification accuracy of distance training	0.1
F' 4.60	set vs. $\log(C)$ for $\gamma=1.0$	81
Fig. 4.60	Fault classification accuracy of distance training set vs. $log(C)$ for $\gamma=1.2$	82
Fig. 4.61	Ground detection accuracy of ground test set vs.	82
11g. 4.01	$\log(C)$ for $n=2$	87
Fig. 4.62	Ground detection accuracy of ground test set vs.	07
119. 1102	$\log(C)$ for $n=3$	88
Fig. 4.63	Ground detection accuracy of ground test set vs.	
9	$\log(C)$ for $n=4$	88
Fig. 4.64	Ground detection accuracy of ground test set vs.	
8	$\log(C)$ for $n=5$	88
Fig. 4.65	Ground detection accuracy of ground test set vs.	
	$\log(C)$ for $n=6$	89
Fig. 4.66	Ground detection accuracy of ground test set vs.	
	$\log(C)$ for $n=7$	89
Fig. 4.67	Ground detection accuracy of ground test set vs.	
	$\log(C)$ for $n=8$	89
Fig. 4.68	Ground detection accuracy of ground test set vs.	
	$\log(C)$ for $\gamma=0.4$	90
Fig. 4.69	Ground detection accuracy of ground test set vs.	
	$\log(C)$ for $\gamma=0.6$	90
Fig. 4.70	Ground detection accuracy of ground test set vs.	
Te': 4.51	$\log(C)$ for $\gamma=0.8$	90
Fig. 4.71	Ground detection accuracy of ground test set vs.	0.1
Fig. 4.72	$\log(C)$ for $\gamma=1.0$	91
rig. 4.72	Ground detection accuracy of ground test set vs. $\log(C)$ for $y=1,2$	91
Fig. 4.73	$log(C)$ for $\gamma=1.2$ Ground detection accuracy of ground training set	91
116.4.75	vs. $log(C)$ for $n=2$	91
Fig. 4.74	Ground detection accuracy of ground training set	71
g	vs. $log(C)$ for $n=3$	92
Fig. 4.75	Ground detection accuracy of ground training set	7_
0	vs. $\log(C)$ for $n=4$	92
Fig. 4.76	Ground detection accuracy of ground training set	
	vs. $\log(C)$ for $n=5$	92
Fig. 4.77	Ground detection accuracy of ground training set	
	vs. $log(C)$ for $n=6$	93
Fig. 4.78	Ground detection accuracy of ground training set	
	vs. $log(C)$ for $n=7$	93
Fig. 4.79	Ground detection accuracy of ground training set	
-	vs. $log(C)$ for $n=8$	93
Fig. 4.80	Ground detection accuracy of ground training set	
T' 4.04	vs. $\log(C)$ for $\gamma=0.4$	94
Fig. 4.81	Ground detection accuracy of ground training set	
	vs. $\log(C)$ for $\gamma=0.6$	94

Fig. 4.82	Ground detection accuracy of ground training set	
	vs. $\log(C)$ for $\gamma=0.8$	94
Fig. 4.83	Ground detection accuracy of ground training set	
	vs. $\log(C)$ for $\gamma=1.0$	95
Fig. 4.84	Ground detection accuracy of ground training set	
	vs. $\log(C)$ for $\gamma=1.2$	95
Fig. 4.85	The power system for simulation	98