

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering Department

STRESS – STRAIN BEHAVIOR OF ULTRA HIGH STRENGTH CONCRETE UNDER COMPRESSIVE AND TENSILE STRAINS

A Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Civil Engineering

(Structural Engineering)

by

Eng. Yasser Mohamed Soliman Darwish

Bachelor of Science in Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, year 2012

Supervised By

Prof. Amr A. Abdelrahman

Professor of Concrete Structures, Head of Structural Engineering Dept., Ain Shams University, Cairo, Egypt

Dr. Marwan T. Shedid

Assistant professor, Structural Engineering Dept., Ain Shams University, Cairo, Egypt

Dr. Enas A. Khattab

Assistant Professor, Material Dept., Housing and Building National Research Center, Giza, Egypt

Cairo - (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering Department

STRESS – STRAIN BEHAVIOR OF ULTRA HIGH STRENGTH CONCRETE UNDER COMPRESSIVE AND TENSILE STRAINS

by

Eng. Yasser Mohamed Soliman Darwish

Bachelor of Science in Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, year 2012

Examiners' Committee

Name and Affiliation

Prof. Hany Mohamed El-Hashimy

Professor of Concrete Structures, Faculty of Engineering, Cairo University

Prof. Ahmed Sherif Ali Essawy

Professor of Concrete Structures, Faculty of Engineering, Ain Shams University

Prof. Amr Ali Abd El-Rahman

Professor of Concrete Structures and Head of Structural Engineering Department, Ain Shams University Signature

Date: 15 August 2016

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

YASSER MOHAMED SOLIMAN DARWISH

	Sig	nature

Date: 15 August 2016

Researcher Data

Name : Yasser Mohamed Soliman Darwish

Date of birth : 26 August, 1990

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the

degree

Date of issued degree : June 2012

Current job : Teaching Assistant – Structural Engineering

Department- Faculty of Engineering- Ain

Shams University

: Ain Shams University

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural Engineering Department

STRESS – STRAIN BEHAVIOR OF ULTRA HIGH STRENGTH CONCRETE UNDER COMPRESSIVE AND TENSILE STRAINS

by: Yasser Mohamed Soliman Darwish

Abstract

Due to technological development, advance in tall buildings' construction and more frequent use of prestressed concrete in buildings and bridges, the demand for the use of High and Ultra High Strength Concrete (HSC and UHSC respectively) used in reinforced concrete structures has increased rapidly. For example, in building design using higher concrete strength lead to significant reduction in the dimensions of concrete members, which helped increasing spans and the construction of taller and lighter buildings. Also, in design of bridges, the use of UHSC is very useful in decreasing the number of girders required as well as reducing their depth with increased spans.

Design of reinforced concrete elements mainly depends on the characterestics of the equivlant compressive stress block subjected to combined flexural and compressive stresses. This research is based on determining the design parameters of the equivalent compressive stress block for ultra high strength concrete having strength higher than 60MPa, as such parameters are not well defined compared to those used for Normal Strength Concrete (NSC).

Seven C-bracket concrete specimens were tested under combined flexure and compression stresses to determine the realistic stress distribution at the

compression zone of ultra high strength concrete members. The main variable was the concrete compressive strength for each specimen. Equivalent rectangular stress block parameters as well as the ultimate compressive strain for those members were obtained from experimental investigations & compared to those defined in major international design codes.

The values of the equivalent rectangular stress block parameters changes with the increase in the concrete compressive strength. The stress-strain relationship for HSC and UHSC obtained from tested specimens indicated that the ascending branch is more linear when compared to NSC. Also, the failure of HSC and UHSC became more brittle than NSC in a more explosive manner.

Keywords: Ultra high strength concrete, Rectangular stress block, Compression, Flexure, Ultimate compressive strain.

Dedication

To my family

(My Father, My Mother, My Brother and My Sister)

I dedicate this thesis to them for their unlimited support and encouragement over the years. I could not be able to complete this work without their support.

Acknowledgment

I would like to express my deepest appreciation to my main supervisor and my teacher, Prof. Amr Abd El-Rahman, who made an impact on my personality. His patience, support, concern and guidance throughout the last four years were the reason behind my success.

I would like to thank my supervisor, Dr. Marwan Shedid, who treated me as a younger brother. I really appreciate his big efforts in advising me through the last three years. The discussions I had with him were invaluable.

I would like specially to thank Dr. Enas Khattab, who worked with me hand to hand in my experimental work. She encouraged and advised me till my work was done.

I would like to thank Dr. Shady Nabil for his continuous help. His ideas were important to me.

August 2016