Management of Deep Sternal Wound Infection

Essay submitted in partial fulfillment for Master Degree in General surgery

By

Ali Sayed Rezk (M.B.B.Ch.)

Supervised by

Prof. Dr.Khaled Ali Gawdet

Professor of General Surgery Faculty of Medicine, Ain Shams University.

Dr. Mohammed M. Abdel Fattah

Assistant Professor of Cardiothracic Surgery Faculty of Medicine, Ain Shams University.

Dr. Mohammed M. Bahaa El Din

Lecturer of General Surgery Faculty of Medicine, Ain Shams University.

> Faculty of Medicine Ain Shams University 2014

LIST OF CONTENTS

Title	Page
Contents	i
Introduction and Aim	1
Review of Literature	3
Anatomy	3
Definition and Classification	13
Incidence, Etiology and Pathogenesis	16
Risk Factors	21
Prevention	28
Diagnosis	42
Treatment	53
Summary	120
Conclusion	125
References	126

LIST OF TABLES

No.	Title	Page
1	Classification of mediastinitis according to (El Oakley	14
	and Wright, 1996).	
2	Classification of sternal wounds according to anatomical	110
	site	

LIST OF FIGURES

No.	Title	Page
1	Mediastinal compartments	4
2	Anterior surface of the sternum	6
3	Posterior surface of sternum	6
4	Sternal vascularization is provided by six different types	9
	of vessels	
5	Schematic drawings of the sternal branches, representing	11
	the arcade pattern of the sternal blood supply	
6	Morphologic variants of the sternal blood supply	12
7	Pathogenic factors of Staphylococcus aureus, with	19
	structural and secreted products both playing roles as	
	virulence factors	
8	Pathogenic factors of Staphylococcus aureus, with	27
	structural and secreted products both playing roles as	
	virulence factors	
9	Modified Robiseck closure. The parasternal wires drawn	39
	anterior and posterior to alternate ribs	
10	Schematic diagram outlining incorporation of rigid plate	40
	fixations	
11	Acute mediastinitis and left-sided empyema after cardiac	45

	surgery in a 55-year-old man. Contrast enhanced CT	
12	Patterns 99mTc-HMPAO labelled leucocyte scan in	48
	diagnosing sternal wound infections	
13	The flow diagram that is used on evaluation of a patient	50
	postmediasternotomy shows the importance of sternal	
	stability in the eventual care of this patient	
14	Bimanual alternating chest compressions are used for	50
	diagnosing sternal stability	
15	Flow chart summarizing the management of sternal	56
	wounds	
16	Diagrammatic presentation of the peristernal weave	68
	described by Robicsek	
17	Modified Robiseck closure	68
18	Pericostal weave described by Jelic and Anic	69
19	Schematic illustration of the pericostal wire closure of	69
	Wilkinson and Clarke	
20	Example of rigid closure of the sternum on the left and	71
	conventional wire closure on the right	
21	Surgical technique of sternal plates' fixation	73
22	Post-operative Chest X-ray following sternal plates'	74
	fixation. It demonstrates sternal union	
23	Handcrafted vacuum system	79
24	The vacuum-assisted wound closure system in situ with	79
	100 mm Hg of suction	
25	Operative procedure of single-stage omental flap	91

	transposition	
26	Representations of remnant omental transfer after	94
	harvesting of the right gastroepiploic artery graft	
27	Port placement for laparoscopic omentoplasty	97
28	Technique of laparoscopic omental flap, with complete	97
	separation of the omentum from the transverse colon and	
	lengthening of the mobilized omentum by division of	
	some anastomosing arteries between gastroepiploic	
	vessels and Barkow's arcade	
29	A) The vascular arcade supplying the pectoralis major	99
	muscle (El Gamel et al., 1998). B) Left: The pectoralis	
	major muscle is elevated as an island flap and the insertion	
	of the muscle is detached from the humerus	
30	Intraoperative view of pectoralis major muscle of the other	101
	side elevated as an advancement flap	
31	The bilateral pectoralis major muscle advancement flap	101
	technique	
32	The intraoperative view of the pectoralis major muscle	104
	flap elevated as an island flap, the insertion is detached	
33	The rectus abdominis transposition flap	109
34	A, The bipedicled muscle flap consists of a superiorly	112
	based pectoralis major muscle flap and an inferiorly based	
	rectus abdominis muscle flap raised in continuity. B, The	
	flap is transposed into the defect	
35	A, A 51-year-old man with an anterior chest wall defect	112

	caused by mediastinitis after valve replacement surgery. B	
	and C, The elevated bipedicled pectoralis major-rectus	
	abdominis muscle flap. D, The bilateral flap units are	
	transposed medially and cover the lower third of the defect	
	of the anterior chest	
36	The use of allograft Achilles tendons in sternal synthesis	119

LIST OF ABBREVIATIONS

^{99m}Tc-HMPAO ^{99m}Tc-hexamethylpropylene amine oxime

^{99m}Tc-UBI29–41 ^{99m}Tc-labeled ubiquicidin 29–41

ASTA Anti-Staphylolysin Test

ATA Atmospheres Absolute

BG Blood Glucose

BMI Body Mass Index

CABG Coronary Artery Bypass Grafting

CDC Centers of Disease Control

CDI Clostridium difficile Infection

CHG Chlorhexidine Gluconate

CoNS Staphylococcus epidermidis

CT Computed Tomography

DSWI Deep Sternal Wound Infection

ESAAS Electrolyzed Strong Acid Aqueous Solution

GEA Gastroepiploic Artery

HBO Hyperbaric Oxygen

ICU Intensive Care Unit

IgG Immunoglovulin G

IMA Internal Mammary Artery

ITA Internal Thoracic Artery

MRSA Methicillin-Resistant S. Aureus

MSCRAMMs Microbial Surface Components Recognizing Adhesive Matrix

Molecules

NNIS National Noscomial Infections Surveillance System

NPWT Negative-Pressure Wound Therapy

OA Omental Artery

PM Postoperative Medistinitis

POD Postoperative Day

RAT Rectus Abdominis Transposition

SC Sterno-Costal

SP Sterno-Perforating

SPECT Single-Photon Emission Computed Tomography

SSI Surgical Site Infection

SWI Sternal Wound Infection

TNP Topical Negative Pressure

VAC vacuum-Assisted Closure

WBCs White blood cells

Introduction and Aim

INTRODUCTION

Postoperative mediastinitis (PM) or deep sternal wound infection (DSWI) is a serious and potentially lethal condition with an overall incidence varying from 0.4–5% (Segers et al., 2005) with associated mortality rate varies from 14% to 47% (El Oakley and Wright, 1996; Poncelet et al., 2008).

Gram-positive bacteria are the most commonly isolated organisms in mediastinitis; Staphylococcus aureus or S epidermidis are identified in 70% to 80% of cases (*Demmy et al.*, 1990). Mixed infections may account for up to 40% of cases (*Starr et al.*, 1984).

Commonly quoted risk factors include obesity, chronic obstructive pulmonary disease, elderly age, peripheral vascular disease, reoperation, use of internal thoracic artery (ITA) conduits, operation time, low cardiac output, ventilation time, and re-exploration for bleeding (*Borger et al.*, 1998).

Prevention of wound complications is one of the most important aspects of management of patients undergoing cardiac surgery. Early diagnosis and treatment of mediastinitis may prevent the spread of infection to the prosthetic materials used in cardiac repair, with its devastating sequelae (*El Oakley and Wright*, 1996).

Conventional forms of treatment usually involve surgical revision with open dressings or closed irrigation, or reconstruction with vascularized soft-tissue flaps such as omentum or pectoral muscle. These conventional methods have reduced the mortality rate of mediastinitis, but without overwhelmingly satisfactory results (*De Feo et al.*, 2011).

In recent years a new technique, the effectiveness of topical negative pressure (TNP) in the treatment of sternal wound infections after cardiac surgery has been introduced resulting in beneficial effects on blood flow to the wound and the proliferation of granulation tissue (*Sjogren et al.*, 2005; Argenta et al., 2006). However, bleeding has been

INTRODUCTION & AIM

reported as the major complication during negative pressure wound therapy for postoperative mediastinitis (*Petzina et al.*, 2010).

Therefore, in the current study we review the literature for the topic of "postoperative mediastinitis" regarding its definition, classification, incidence, etiology, pathogenesis, risk factors, diagnosis, preventive measures, and modes of treatment.

Review of Literature