

Ain-Shams University Faculty of Science Chemistry Department

Nanostructure Carbon Based Materials from Agriculture Wastes for Separation of Hydrogen from Syn-Gas

Presented by

Mohamed Elsaied Abd-Elsalam Mohamed

Assistant researcher

Egyptian Petroleum Research Institute

For

The Degree of Doctor philosophy in Chemistry (PhD)

Supervised by

Prof. Dr. Fathy Y. El Kady

Professor of Physical Chemistry Professor of Catalysis

Faculty of Science Refining Department

Ain Shams University Egyptian Petroleum Research Institute

Dr. Ahmed M. A. El Naggar
Assistant Professor of Physical Chemistry
Egyptian Petroleum Research Institute

2017

Nanostructure Carbon Based Materials from Agriculture Wastes for Separation of Hydrogen from Syn-Gas

Bv

Mohamed Elsaied Abd-Elsalam Mohamed

THESIS ADVISORES

1. Prof. Dr. Fouad I. Elhosiny

Professor of Physical Chemistry
Faculty of Science, Ain Shams University

2. Prof. Dr. Fathy Y. El Kady

Professor of Catalysis, Egyptian Petroleum Research Institute

3. Dr. Ahmed M. A. El Naggar

Assistant Professor of Physical Chemistry, Egyptian Petroleum Research Institute

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

Nanostructure Carbon Based Materials from Agriculture Wastes for Separation of Hydrogen from Syn-Gas

Вy

Mohamed ElsaiedAbd-Elsalam Mohamed

Prof. Dr. Fouad I. Elhosiny Professor of Physical Chemistry Faculty of

Science, Ain Shams University

Prof. Dr. Fathy Y. El Kady Professor of Catalysis, Egyptian

Petroleum Research Institute

Prof. Dr. Mohamed M. Wasel Professor of Physical Chemistry Faculty of

Science, Al- Azhar University

Prof. Dr. Esam A. Keshar Professor of In Organic Chemistry College

of Women's for Arts, Science and Education

Ain Shams University

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

ACKNOWLAGEMENT

I am in a greatest thankful to ALLAH, The Most Merciful, The Most Gracious, by the grace of whom the progress and success of the present work. I would like to express my gratitude to my supervisor professor Found Ibrahim El-Hosiny, professor of physical chemistry, Ain Shams University, Egypt, for his kind supervision and valuable advices throughout all the steps of the work. His valuable knowledge is hardly printed in my mind also, for his guidance throughout my thesis. I am deeply indebted to Professor Fathy Yossif El-Kady, professor of catalysis chemistry, Egyptian petroleum research institute (EPRI) for suggesting the point of research, discussions critical to the progress of the research, for the help he gives to tackle all scientific challenges, for support and encouragement. Words are not enough to thank Assistant Professor Ahmed metwally Ali El-naggar, associate professor of petroleum chemistry, Egyptian petroleum research institute (EPRI) for suggesting the point of research, for his close and continuous supervision, his valuable advices, guidance make this research fruitful and applicable. I am particularly grateful to *Professor* Ahmed Mohamed El-Sabagh, director of the Egyptian petroleum research institute for facilitating all the difficulties that I encountered through my research. I would like also to thank colleagues in Egyptian petroleum research institute especially doctor Ahmed **Mohamed Osama** for their endless help and complete support. Word are not enough to thank my beloved family for their deep love, patience and their continuous support, especially My Father, My Mother, My brother, My sisters, My Wife and my sons.

TABLE OF CONTENTS

List of Tables
List of figures.
List of abbreviationsX
AbstractXII
Table of contents
Chapter 1
1 INTRODUCTION1
1.1 Activated carbon1
1.1.1 Definition1
1.1.2 Production of activated carbon
1.1.3 Raw Materials3
1.1.4 Carbonization3
1.1.5 Activation4
1.1.5.1 Chemical activation5
1.1.6 Physical Structure of Activated Carbon8
1.1.6.1 Porosity10
1.2 Cellulose hydrolysis into glucose14
1.3 Importance of Hydrogen
1.4 Membrane Technology19
1.4.1 Definition and Classification of Membranes19
1.4.2 Transportation of Substances through20
Membranes

TABLE OF CONTENTS

1.4.2.1 Solution-Diffusion Model	21
1.4.2.2 Hydrodynamic Model	22
1.4.2.3 Flow Geometries through	22
Membranes	
1.4.2.4 Membrane Modules	24
1.4.3 Materials for Membrane Fabrication	26
1.4.4 Membranes for Separation Processes	27
1.4.4.1 Effective Separation Parameters	30
1.4.4.2 Membrane Performance	31
1.4.4.3 Advantages of the Membrane	33
Separation Process	
1.5 Gases Separation by Membranes	35
1.5.1 Membranes Candidate Materials	37
1.5.2 Hydrogen Separation	39
1.6 Membranes for Hydrogen Separation and	40
Purification	
1.6.1 Hydrogen Separation Mechanism by	41
Membrane	
1.7 Desulfurization Process	43
1.7.1 Hydrodesulfurization Process (HDS)	45
1.7.2 Adsorptive Desulfurization (ADS)	46
1.7.2.1 Advantages of π -complexation	48
adsorption	
1.8 Aim of the Work	50

CHAPTER 2

2. EXPREMENTAL TECHNIQUES	52
2.1 Preparation of Activated Carbon Practically	52
2.2 Materials	53
2.3 Preparations Procedures	53
2.4 Implemented Application Using the Prepared	56
Activated Carbon	
2.4.1 Catalytic Conversion of Cellulose	56
2.4.2 Hydrogen Separation from Gases Mixtures.	57
2.4.2.1 Hydrogen Separation Procedures	60
2.4.3 Sulfur Removal	62
2.5 Characterizations	63
2.5.1 Analytical Techniques	64
2.5.1.1 BET Surface Area Analysis	64
2.5.1.2 X-Ray Diffraction (XRD)	.64
2.5.1.3 High Resolution Transmission	.64
Electron Microscopy (HRTEM)	
2.5.1.4 Fourier Transform Infra-Red	. 65
(FT-IR	
2.5.1.5 Thermal Gravimetric Analysis	65
(TGA)	
2.5.1.6 Scanning Electron Microscopy (SEM)	65

CHAPTER 3

3. RESULTS and DESCUSSION	65
3.1 Characterization of the Produced Carbon Based	172
Materials	
3.1.1 XRD Analysis	73
3.1.2 FT-IR Spectroscopy	78
3.1.3 TEM & SEM Imaging	84
3.1.4 TGA-DSC Analysis	97
3.2 Catalytic Hydrolysis of Cellulose	101
3.2.1. Catalyst Comparability	104
3.3 Hydrogen energy	106
3.3.1 Hydrogen membrane	108
3.3.2 Hydrogen separation by membrane	111
3.3.2.1 Effect of Gas Composition on Ha	121
Separation.	
3.4 Adsorptive desulfurization	125
3.4.1 Effect of Variable Parameters on the	127
3.4.1.1. Effect of Contact Time on the	127
Adsorption Process	
3.4.1.2. Effect of Temperature on	129
the Adsorption process	
3.4.1.3. Effect of Adsorbent Dosage on	131
the Adsorption Process	
3.4.1.4. Effect of BT Initial Concentration on	132

TABLE OF CONTENTS

the Adsorption Process.

Chapter 4	ŀ
-----------	---

CII	apter 4
4. CONCLUSION	134
5. REFERENCES	138
ARABIC SUMMARY	

List of Tables

Table 1	Steps and range of temperature in the	4
	carbonization process.	
Table 2	Chemical activation of lignocellulosic	11
	biomass.	
Table 3	Classes of filter membranes by pore	29
	size and their most common	
	applications.	
Table 4	Chemical compositions of the used	53
	solid wastes in this study.	
Table 5	Different operating and activators for	55
	the production of activated carbons.	
Table 6	Surface characteristic of the produced	66
	activated carbons at the various	
	operating conditions.	
Table 7	Catalytic activity of the prepared	102
	carbon structures for the thermal	

	production of glucose from cellulose.	
Table 8	Catalytic activity of several catalysts	105
	towards the thermal hydrolysis of	
	cellulose, as acquired from literature.	
Table 9	Numerical values of both hydrogen	113
	and nitrogen gases permeation at	
	constant pressure and temperatures	
	(25-250 °C)	
Table 10	Selectivity of hydrogen over nitrogen	117
	and permeability rates of hydrogen at	
	different temperatures and constant	
	pressure.	
Table 11	H ₂ /N ₂ selectivity and fluxes of the	121
	Ni-membrane under the effect of	
	different gas compositions.	
Table 12	Relation between temperature	124
	increase and H_2/N_2 selectivity / fluxes	
	of -membrane using a gas mixture.	

List of Figures

Figure 1	Pore Structure of Activated Carbon	2
Figure 2	Schematic Representation of	9
	(a) Nongraphitizing and	
	(b) Graphitizing Structure of Carbon	
Figure 3	World primary energy production in	14
	2009 by source	
Figure 4	Schematic representation	16
	of lignocellulosic biomass with the	
	structure of cellulose, hemicellulose	
	and lignin	
Figure 5	Utilization of lignocelluloses	16
	to produce chemicals and fuels	
Figure 6	Structure of cellulose (degree	17
	of polymerization)	
Figure 7	Membrane separation process	23
	by Cross-flow geometry	

LIST OF FIGURES

Figure 8	Separation module by the dead-end	23
	filtration technique	
Figure 9	Separation process using sheet-like	25
	(plate) membrane	
Figure 10	Separation of hydrogen from gas	25
	mixture via a hollow fiber membrane	
	module.	
Figure 11	Mechanism of H ₂ permeation through	42
	hydrogen selective membrane	
Figure 12	Sulfur compounds in fuel oils	44
Figure 13	Previous, current and proposed sulfur	44
	limitations in (a) Diesel and	
	(b) Gasoline in different countries	
Figure 14	Technical design of the fabricated	59
	hydrogen separation reactor	
Figure 15	Schematic diagram for the hydrogen	60
	separation module	
Figure 16	N ₂ adsorption-desorption isotherm of	72

	activated carbon	
Figure 17	XRD pattern of plain activated carbon	74
Figure 18	XRD pattern of the acid sites	74
	functionalized attached carbon	
	(TFA/AC)	
Figure 19	XRD pattern of the heat treated Ni	76
	metallized activated carbon.	
Figure 20	XRD pattern of SO ₃ Ag/AC catalyst	78
Figure 21	FT-IR spectrum of the raw activated	79
	carbon	
Figure 22	FT-IR spectrum of the acid sites	79
	functionalized attached carbon	
	(TFA/AC)	
Figure 23	FT-IR spectrum of the nickel	82
	functionalized activated carbon	
Figure 24	FT-IR spectrum of SO ₃ Ag	83
	functionalized activated carbon.	
Figure 25	TEM micrographs of the freshly made	85

	activated carbon			
Figure 26	TEM micrographs of the	86		
	functionalized activated carbon			
	(TFA/AC)			
Figure 27	TEM images of the nickel metalized	88		
	activated carbon			
Figure 28	TEM images of the SO ₃ Ag/AC	89		
Figure 29	Surface morphology of the	92		
	as-prepared AC			
Figure 30	Surface appearance of the TFA/ AC	93		
	structure			
Figure 31	Morphology of the Ni metalized AC	95		
	surface			
Figure 32	Surface features of the SO ₃ Ag/ AC	96		
	structure			
Figure 33	TGA profile of the freshly made	98		
	activated carbon			