

Development and Functionalizing Bioactive Glass Coatings on 316L Stainless Steel for Hard Tissue Implantation and Fixation

Ph.D. Degree in Physics (Biophysics)

By Zainab Mohammad Ibrahim Al-Rashidy

A Thesis Submitted To

Physics Department (Biophysics)
University Collage of Women (Arts, Science and Education)
Ain-Shams University

Under the Supervision of

Prof. Dr. Wafaa I. Abdel-Fattah

Professor of Bioceramics, Refractories and Ceramics Department, National Research Centre, Cairo, Egypt.

Prof. Dr. Nabil A. Abdel Ghany El-Manakhly

Professor of Applied Physical Chemistry, Physical Chemistry Department, National Research Centre, Cairo, Egypt.

Dr. Alaa EL Deen Mohamed

Associate Professor Solid state, Physics Department, Collage of Women (Arts, Science, and Education, Ain-Shams University, Cairo, Egypt.

Supervision Sheet

Name of Student: Zainab Mohammad Ibrahim Al-Rashidy

Graduate: Biophysics 2005, Department of Physics, Faculty of Science, Al-

Azhar University.

M.Sc. Degree, Faculty of Science, Al-Azhar University, 2010.

Title of Thesis: Development and Functionalizing Bioactive Glass Coatings

on 316L Stainless Steel for Hard Tissue Implantation and

Fixation

Scientific degree: Ph.D. Degree in physics "Biophysics"

Department: Physics

Under Supervision of

Prof. Dr. Wafaa I. Abdel-Fattah

Professor of Bioceramics, Refractories and Ceramics Department, National Research Centre, Cairo, Egypt.

Prof. Dr. Nabil A. Abdel Ghany El-Manakhly

Professor of Applied Physical Chemistry, Physical Chemistry Department, National Research Centre, Cairo, Egypt. Dr. Alaa EL Deen Mohamed

Associate Professor Solid state, Physics Department, Collage of Women (Arts, Science, and Education, Ain-Shams University, Cairo, Egypt.

Post graduate administration					
Date of research:	/	/			
Date of approval:	1	/			
Approval stamp:	/	/			
Approval of Faculty	y Cour	ncil:	/	/	
Approval of University Council:		/		/	

Approval Sheet

Name of Student: Zainab Mohammad Ibrahim Al-Rashidy

Title of Thesis: Development and Functionalizing Bioactive Glass Coatings

on 316L Stainless Steel for Hard Tissue Implantation and Fixation

Graduate: Biophysics 2005, Department of Physics, Faculty of Science, Al-Azhar University.

M.Sc. Degree, Faculty of Science, Al-Azhar University, 2010.

Scientific Degree: Ph.D. Degree in Biophysics

This Ph.D. Thesis in Biophysics has been approved by

Prof. Dr. Wafaa I. Abdel-Fattah

Professor of Bioceramics, Refractories and Ceramics Department, National Research Centre, Cairo, Egypt.

Prof. Dr. Osiris Wanis Guirguis

Professor of Biophysics, Biophysics Department, Faculty of Science, Cairo University, Giza Egypt.

Dr. Alaa El Deen Mohamed

Associate Professor, Solid state, Physics Department, Collage of Women (Arts, Science, and Education), Ain-Shams University, Egypt.

Prof. Dr. Tarek Mohammed EL-Desoki

Professor of Radiation Physics, Physics Department, Collage of Women (Arts, Science and Education), Ain-Shams University, Cairo, Egypt.

Student Name: Zainab Mohammad Ibrahim Al-Rashidy

Scientific degree: Bachelor of Science physics (Biophysics)

Department: Physics Department

Faculty: Science Collage

University: Al-Azhar University

Date of graduation: 2005

English Abstract

"Development and Functionalizing Bioactive Glass Coatings on 316L Stainless Steel for Hard Tissue Implantation and Fixation"
Refractories and Ceramics Department, National Research Centre, Cairo, Egypt.

The present work was essentially concerned with an improvement of the biocompatibility of 316L stainless steel (316L SS) by coating its surface by bioactive borate glass or silicate-based bioactive glass/chitosan composite layers using electrophoretic deposition (EPD) technique. Suspension of glass particles in double distilled water was used in this study as a coating suspension. The EPD parameters such as pH, applied voltage, glass concentration and time were optimized. The obtained coated substrates were investigated using FT-IR, X-ray diffraction and SEM/EDX analyses, as well as, the wettability and roughness were investigated. Additionally, the in vitro biodegradation was compared by applying biochemical and electrochemical corrosion assessment of the developed glass coatings in two biological fluids, SBF and DMEM at body temperature (37 °C). The results showed that the optimum conditions applied for borate-based glass coating to obtain uniform, cracked-free and adhesive coatings were achieved at pH 7, voltage 35 V, 4 % w/v glass and 15 min deposition time. The optimum ones for composite coatings were attained at 20 V, deposition time of 5 min, 0.5 g/L polymer concentration and 6 g/L glass concentration. The resulted coated 316L SS specimens demonstrated improved bioactivity and good corrosion resistance in both SBF and DMEM solutions at 37 °C using potentiodynamic polarization (PDP) technique.

Keywords

Borate glass, bioactive glass, composite, coating, electrophoretic deposition, antimicrobial coating

Acknowledgement

The author wishes to express her deep gratitude to **Prof. Wafaa Ismail**, Refractories and Ceramics Department, National Research Center, for supervision, the help and advice she gave to me during the progress of the work. I also thank her for continuous support, valuable ideas, and fruitful reviewing the manuscript. The author is grateful to **Dr.Alaa EL Deen Mohamed**, Physics Department, Faculty of Science University Collage of Women (Arts, Science and Education), Ain-Shams University for his kind interest and supervision.

My special thanks go to my supervisor **Prof. Nabil El-Manakhly** Physical Chemistry Department, National Research Centre, for their valuable suggestion, supervision, strong support and continuous assistance.

Great thanks for my parents and my husband (Dr. Mohamad M, Farag). Great thanks for my sisters, brothers my son Ziad and my daughter Salma.

Dedicated to soul of my father and my mother

Contents	
Aim of the Work	1
Chapter I	2
Introduction	2
1.1. Definition and types of biomaterials	2
1.2. Metallic biomaterials	3
1.2.1. Titanium alloys	4
1.2.2. Cobalt chromium alloys	5
1.2.3. 316L stainless steel	6
1.3. Types of coating materials	7
1.3.1. Inorganic coating materials	7
1.3.2. Organic coatings	13
1.3.3. Composite coatings	16
1.4. Coating techniques	17
1.5. Antimicrobial coatings	23
Chapter II	26
Literature Review	26
2.1. Bioactive coatings	26
2.1.1. Hydroxyapatite coating	26
2.1.2. Bioactive glass and glass-ceramic coatings	33
2.1.3. Organic-inorganic composite coatings	44
2.2. Antibacterial coatings	49
Chapter III	52
Materials & Methods	52
3.1. Materials	52
3.2. Electrophoretic deposition (EPD)	54
3.3. Characterizations	55
3.4. <i>In vitro</i> degradation test	56
3.4.1. Biological fluids	
3.4.2. Inorganic ionic concentrations	
3.5. <i>In vitro</i> electrochemical corrosion	58

3.5.1.	Potentiodynamic polarization (PDP)	58
3.5.2.	Electrochemical impedance spectroscopy (EIS)	59
Chapter IV		61
Borate-Base	d Glass Coating	61
4.1. Chara	cterization of glass	61
4.2. Determ	mination of optimal suspensions and EPD parameters	63
4.3. FT-IR	, XRD, SEM/EDX and contact angle measurements	66
4.4. <i>In vitr</i>	o degradation test	69
4.4.1. pl	H measurements	69
4.4.2. Io	nic release concentrations	70
4.5. <i>In vitr</i>	o electrochemical corrosion studies	75
4.5.1. Po	otentiodynamic polarization (PDP) study	75
4.5.2. El	lectrochemical impedance spectroscopy (EIS)	77
Chapter V		80
Bioactive Gl	ass/Chitosan Composite Coatings	80
5.1. XRD		80
5.2. Effect	of different coating parameters	81
5.3. Therm	nogravimetric analysis (TGA)	86
5.4. SEM/	EDX analysis of coated substrates	86
5.5. Hydro	ophilicity, wettability and roughness of coated substrates	91
5.6. In vitr	o degradation and bioactivity test	93
5.6.1. pl	H measurements	93
5.6.2. Io	nic release concentrations	95
5.6.3. <i>In</i>	vitro assessment in SBF	103
5.6.4. F	Γ-IR analysis after immersion in SBF and DMEM	110
5.7. Electr	ochemical corrosion results	114
5.7.1. Po	otentiodynamic polarization study	114
5.7.2. El	lectrochemical impedance spectroscopic (EIS)	115
Summary an	d Conclusion	120
References		124
Arabic Sumr	nary	138

List of Figures

Figure 1. Different types of metal implants used in different body parts 3
Figure 2. Comparison between crystalline and non-crystalline 8
Figure 3. The reaction stages at bioactive glass and surrounding tissue interface
Figure 4. Schematic diagram illustrates the mechanisms of conversion of the silicate glass and the borate glass to HA in a physiological solution
Figure 5. Structure of different biodegradable polymers; collagen, gelatin, alginate, chitosan, poly(L-lactic acid) (PLLA), poly(L-lactic-coglycolic acid) and poly(ε-caprolacton) (PCL)
Figure 6. The range of thickness of coating that can be obtained for each coating techniques
Figure 7. Schematic diagram of plasma spray coating principle (a), and real plasma spray device (b)
Figure 8. Spin and dip sol-gel coating technique
Figure 9. Steps of fabrication of artificial tooth. Porcelain crown is placed at the top of underneath metal implant
Figure 10. Schematic diagram of sputter coating principle (a), and sputtering device (b)
Figure 11. Schematic diagram of electrophoretic deposition process 23
Figure 12. Vancomycin chemical structure
Figure 13.Steps of preparation of antimicrobial coatings for 316L SS 53
Figure 14. (a) XRD pattern of as-prepared glass,(b) particle size distribution after grinding in planetary ball mill (2.5 h) and (c) DSC-TGA thermal analysis of as prepared glass
Figure 15.SEM micrograph of milled glass particulates and its EDX analysis.

Figure 16	5. EPD coating parametrs. (a) optical photos of 316L SS plates coated as a function of incremental voltages (10 - 40 volt) and (b) Effect of voltages on the deposited glass particles weight. (c) optical photos of 316L plates coated at gradual incremental pH values and (d) effect of solution pH on the deposited glass particles weight
Figure 17	.FT-IR reflection spectra of as-prepared borate glass and 316L SS substrate compared to glass coating
Figure 18	. XRD patterns of as-prepared borate glass and 316L SS substrate compared to glass coating
Figure 19	.SEM micrographs of surface coupled with EDX analysis (a) and cross section of the glass-coated substrate (b)
Figure 20	Optical photos of water drop on 316L SS substrate (SS sample) and substrate with glass coating (glass coat. sample) and contact angle measurements.
Figure 21	. pH change of glass-coated substrate into SBF and DMEM solutions as a function of time
Figure 22	Concentration of released B (a) and Ca (b) ions from glass-coated substrate into SBF and DMEM solutions as a function of time. 72
Figure 23	B. Potentiodynamic polarization curves of SS and coated SS in DMEM compared to SBF media
Figure 24	EC used in EIS data analysis of 40S, HB5 and H coated samples on 316L stainless steel
Figure 25	Nyquist curves of uncoated (316L SS) and borate glass coated substrates in SBF (a) and DMEM (b)
Figure 26	XRD patterns of as-prepared glasses, 40S, HB5 and H 80
Figure 27	Optical photos (upper) and deposited weights (lower) represents the effect of voltage of coatings based on 40S, HB5 and H glass/chitosan.composite coatings with constant glass weight (6 g/l) and deposition time (5 minutes)

g 2	Optical photos (upper) and deposited weights (lower) of 40S class/chitosan composite coatings with different glass weights (0, 4, 6, and 8 g/l) and different deposition times (3, 5, 7, 10 and 5 minutes)
g 2	Optical photos (upper) and deposited weights (lower) of HB5 class/chitosan composite coatings with different glass weights (0, 4, 6, and 8 g/l) and different deposition times (3, 5, 7, 10 and 5 minutes)
g 2	Optical photos (upper) and deposited weights (lower) of H class/chitosan composite coatings with different glass weights (0, 4, 6, and 8 g/l) and different deposition times (3, 5, 7, 10 and 5 minutes)
_	Thermogravimetric analysis (TGA) of as-prepared glass and erived composite coatings (40S, HB5 and H samples)
C	SEM micrographs of metal coated surface (a, b and c) and its ross section (d) and EDX analysis (bottom) for surfaces of 40S omposite coatings
C	SEM micrographs of metal coated surface (a, b and c) and its ross section (d) and EDX analysis (bottom) for surfaces of HB5 omposite coatings
C	SEM micrographs of metal coated surface (a, b and c) and its ross section (d) and EDX analysis (bottom) for surfaces of H omposite coatings
c	Optical photos of water drop before (upper) and after (lower) ontacting with different coated metal substrate surfaces, 40S, HB5 and H samples
•	oughness values of different composite coatings compared to 16L SS substrate
•	oH change SBF and DMEM solutions, respectively, incubated netal coated samples as a function of time
S	oncentration of released Ca from the coated metal samples in BF (a) and DMEM (b) solutions, respectively as a function of me

Figure 39.SEM micrographs and EDX analysis of the surface of as-prepared 40S glass after immersion in SBF for 14 days 104
Figure 40.SEM micrographs and EDX analysis of the surface of as-prepared HB5 glass after immersion in SBF for 14 days
Figure 41.SEM micrographs and EDX analysis of the surface of as-prepared H glass after immersion in SBF for 14 days 106
Figure 42.SEM micrographs and EDX analysis of 40S composite coating after immersion in SBF for 14 days
Figure 43.SEM micrographs and EDX analysis of HB5 composite coating after immersion in SBF for 14 days
Figure 44.SEM micrographs and EDX analysis of H composite coating after immersion in SBF for 14 days
Figure 45. FT-IR spectra of 40S of surface of metal composite coating after immersion in SBF and DMEM at different times
Figure 46. FT-IR spectra of HB5 of surface of metal composite coating after immersion in SBF and DMEM at different times
Figure 47. FT-IR spectra of H of surface of metal composite coating after immersion in SBF and DMEM at different times
Figure 48. Potentiodynamic polarization curves of 40S, HB5 and H samples compared to uncoated 316L SS in SBF (a) and DMEM (b) media.
Figure 49. Nyquist curves of 40S, HB5 and H samples compared to uncoated 316L SS in SBF (a) and DMEM (b)

List of Tables

Table 1. Divisions of implants according to application in different body parts and type of metals used in a specific application
Table 2.Chemical Composition (wt %) of surgical 316L stainless steel, Co- Cr and Ti-6Al-4V alloys5
Table 3. Different glass compositions (wt%) used in this study 52
Table 4. Nominal composition of surgical 316L stainless steel (wt%) 54
Table 5. Ion concentration (mmol/dm ³) of mod-DMEM and SBF 57
Table 6.Main parameters obtained from cyclic polarization method 76
Table 7. Fitting parameters for uncoated substrate and borate glass coated substrate in SBF and DMEM solutions using the equivalent circui shown in Figure 24.
Table 8. Mean values of corrosion current densities and corrosion potentials of uncoated SS and composites coated samples in physiological solutions at 37 ± 1 °C
Γable 9. Fitting parameters for uncoated substrate and coated composites samples in SBF and DMEM solution using the equivalent circui in Figure 24.