

A Low-Power High-Speed ADC-Based Equalizer for Serial Links

by

Mostafa M. Ayesh
B.Sc. of Electrical Engineering
(Electronics and Communications Engineering)
Alexandria University, 2013
A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering
Ain Shams University, Cairo

Supervised by:

Doctor Sameh Ibrahim Professor Mohamed Rizk Mohamed Professor Hany Fikry Ragai

Spring 2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

A Low-Power High-Speed ADC-Based Equalizer for Serial Links

by

Mostafa Mahmoud Ayesh

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Alexandria University, 2013

EXAMINERS' COMMITTEE

Signature

Date: 22 / 5 / 2017

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Mostafa Mahmoud Ayesh

Date: 22 / 5 / 2017

Curriculum Vitae

Name: Mostafa Mahmoud Ayesh

Date of Birth: 19/10/1991

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Alexandria University

Date of Degree: 2013

Faculty of Engineering Ain Shams University Electronics and Communication Engineering Department

Researcher Name: Mostafa Mahmoud Ayesh

Thesis title: "A Low-Power High-Speed ADC-Based Equalizer for Serial Links"

Degree: Masters of Science in Electrical Engineering

Summary

The thesis is divided into six chapters including lists of contents, tables, and figures as well as a list of references.

Chapter 1

This chapter is an introduction including the motivation for this work, followed by the thesis outline.

Chapter 2

This chapter includes the literature survey for the analog and digital wireline receivers, and the literature survey for the high-speed ADCs.

Chapter 3

It describes the charge-steering concept, the circuit level of the proposed comparator, the proposed ADC and the overall system of the digital receiver.

Chapter 4

The chapter shows the system level and circuit level simulations. This chapter includes different results for schematics, post-layout simulations, and layouts.

Chapter 5

This chapter discusses the concept of equalization and the different types of equalization. It also provides a literature review for the equalizers and shows the designed DTLE along with its simulation results.

Chapter 6

This last chapter includes the conclusion for this work and the suggested future work on this system either an optimization or further needed implementation.

Thesis supervisors' signature

Full Name	Signature
Sameh Assem Ibrahim	
Mohamed Rizk Mohamed Rizk	
Hani Fikry Ragai	

Abstract

A Low-Power High-Speed ADC-Based Equalizer for Serial Links

by

Mostafa M. Ayesh

Master of Science in Electrical Engineering
Ain Shams University, Cairo

Driven by an accelerating high demand in the interface IPs market for much faster communication links, market enormously moved from the parallel I/Os to high-speed serial links. An increasing hunger for more bandwidth appeared in all applications from networking and computers to wireless and consumer Electronic devices. Moreover, the end user has a growing need for faster exchange of data through Internet, watching full HD movies or listening to ultra-pure music using portable devices which should run for enough long time.

Multi-Gbps transceivers are expected to operate error-free for high-performance-based applications, consume as small silicon area and as low power as possible. This imposes new design and optimization challenges that are difficult to meet, especially for a small area, a low power, and a high speed. However, having a single PHY that meets multiple standards reduces the time-to-market of SOC designs. That is why large companies race to build their own multi-standard reconfigurable PHYs for new high data-rates and technology nodes.

One way to meet different standards is reconfigurability, heavily depending on programmability and the digital portion of the system. To make system easily reconfigurable we should process the signal digitally as much as we can, that is why ADC-based-receivers come ahead. ADC is utilized to change the signal from the analog domain to the digital domain where we can perform feed-forward equalization or decision-feed-back equalization with a variable number of switchable taps to achieve various ranges of channel equalization and hence meets multi-standard requirements.

The main challenge of the digital receivers is the ADC itself. To get high-data-rates, ADCs are required to be Flash to reach such speeds. Flash architectures are well-known traditionally to have the highest speeds, largest area and highest power dissipation.

This thesis proposes a 20-GS/s low-power ADC-based equalizer for high-speed serial wireline receivers. Digital receivers are recently adopted to overcome the challenges facing circuits in the analog domain such as power, delay, and mismatches, besides exploiting benefits of the digital circuits and systems, these benefits are scaling, different and easier adaptation algorithms, calibration, reconfigurability and noise immunity. The ADC-based

equalizer is designed and post-layout-simulated in a 65-nm CMOS technology. It consumes 15.5 mW in the ADC and 0.57 mW in the discrete-time linear equalizer from a 1-V and 1.2-V power supplies. Low power consumption is achieved by using time-interleaving in the ADC architecture, utilizing charge-steering concept, sharing single reference ladder across the four interleaved channels of ADC, and introducing a novel proposed design for the comparator itself in the Flash analog to digital converter besides using the novel discrete-time linear equalizer circuit.

Keywords: Flash ADC, Charge-Steering, High-speed ADC, Preamplifier, Linear Equalizers, Time-interleaved, ADC-based Equalizer, DTLE.

Publications: M. M. Ayesh, S. A. Ibrahim, H. F. Ragai, and M. M. Rizk "A Low-power High-speed Charge-steering ADC-based Equalizer for Serial Links," ICECS, M.Sc/Ph.D. Forum, December 2015.

Acknowledgments

I would like to thank ALLAH for his blessings and kindness, for helping me through all the stages of this thesis. This work is dedicated to my father, my mother, and my lovely wife Marwa.

I am very grateful to my advisors, Prof. Hani Fikry Ragai, Prof. Mohamed Rizk and Dr. Sameh Ibrahim. A great appreciation for Prof. Mohamed Rizk and Prof. Hani Fikry for allowing me to do such a work. A special thanks and appreciation for Dr. Sameh Ibrahim for his guidance, consideration, and motivational encouragement through the whole work of my research and my thesis, he was the one who encouraged me and helped me a lot through this work. A very special appreciation for Dr. Mohamed Aboudina from EECE-Cairo University for his continuous help and guidance, A warm thank you for Eng. Samer Bahr and Eng. Amr Saad and all ICL fellows for their support and time.

Special thanks for Eng. Fady Atef, Eng. Moataz Kadry, Eng. Ahmed Yassin, and all staff of "Silicon-Vision", for their help and advice during the layout and final phases of work. A great gratitude to Prof. Ahmed Khairy Abouelseoud, Dr. Yasser Yousry, and Dr. Wael El-Sharkasy for helping me finding my way.

"In a memoriam of my beloved passed-away-brother Eng. Mohamed Mahmoud Abdelkader Hassan, the Teaching Assistant at Mechanical Engineering Department-Alexandria University, who inspired me all the way after the high school".

M. Ayesh May 2017 To my Father, my Mother, and my lovely wife Marwa

Contents

Co	ontents	5
Lis	st of Figures	7
Lis	st of Tables	10
1	Introduction1.1 Introduction to SerDes1.2 Motivation and Objectives1.3 Organization of this Thesis	
2	System Study and Literature Review 2.1 Backplane Channel	24 25 30 36 42
3	The Proposed Comparator and ADC 3.1 Methodology and Concept of Charge-Steering	50 56 56
4	System-Level and Circuit-Level Simulations 4.1 Simulation Results for the Proposed Charge-Steering Comparator 4.2 System-Level Simulations of the ADC	66 70

5	Design and Simulation Results of the Front-End Equalizer 5.1 The Designed DTLE Equalizer	79 79 82
	5.3 Simulations Results for the Designed DTLE	83
6	Conclusions and Suggested Future Work	87
	6.1 Conclusions	87
	6.2 Suggested Future Work	88
\mathbf{A}	A Modified Single-Ended Version of the Comparator	89
	A.1 Conventional StrongARM Comparator	89
	A.2 Proposed Charge-Steering Based StrongARM Comparator	90
	A.3 Simulation Results	93
\mathbf{B}	Additional Circuits for ADCs	95
	B.1 Sample and Hold Network	95
	B.2 The designed DAC for testing	96
	B.3 The Digital Encoder	97
	B.4 The De-Serializer	97
\mathbf{C}	Verilog-A and Matlab codes	99
	C.1 Verilog-A Model for a Comparator	99
	C.2 Verilog-A Model for a 4-bits DAC	100
	C.3 Verilog-A Model for 4 to 1 Multiplixer	100
	C.4 Verilog-A Model for a D Flip-Flop	101
	C.5 Verilog-A Model for Sample and Hold Circuit	102
	C.6 Verilog-A Model for a VGA	103
	C.7 A Verilog-A Model for a CTLE	103
	C.8 A Matlab Code for the ADC Static-Performance Results	106
	C.9 A Matlab Code for the ADC Dynamic-Performance Results	108
	C.10 Verilog-A Model for the Pseudo Random Bits (PRBS) Generator	109
Bi	ibliography	110

List of Figures

1.1	I/O Scaling Projections as Projected by the ITRS. [1]	16
1.2	Simple Implementation for the Serial-Link at Low-Speed Signaling	16
1.3	Eye Diagram Along the Channel at Low-Speed Signaling. [2]	16
1.4	More Complicated Implementation for the Serial-Link at High-Speed Signaling. [2]	17
1.5	Eye Diagram Along the Channel at High-Speed Signaling. [2]	17
1.6	Eye Diagram Before and After Equalization. [2]	18
1.7	(a) Conventional Receiver (b) ADC-Based Receiver with DSP Backend. [6]	19
2.1	A High-Speed Backplane Channel. [9]	22
2.2	Frequency Response and Impulse Response of Some Backplane Channels. [12] .	22
2.3	Different Frequency Responses of FR4 Backplane Channels with Different Lengths.	
	$[12] \dots \dots$	23
2.4	The Response of the Channel to a 160-ps Wide Pulse. [12]	24
2.5	The Effect of ISI. [12]	24
2.6	The Frequency Response of the Channel, the Required Equalizer and the Overall	
	Flat Response	25
2.7	The Channel Frequency Response and its Pulse Response at Different Data Rates.	
	$[13] \dots \dots$	26
2.8	The Eye Diagrams Corresponding to the 24-inch Backplane at Different Data	
	Rates. [13]	26
2.9	A Schematic for a Second Order Passive Continuous Time Linear Equalizer. [14]	27
2.10	An Active CTLE. (a) The Circuit Topology. (b) Its Frequency Response. [15] .	28
2.11		28
	The Schematic of Feed-Forward Equalizer (FFE). [14]	29
	The Basic Implementation of the DFE in the Receiver. [16]	29
	A Simple Implementation of the Digital DFE. [20]	30
2.15	An ADC-Based Receiver with 2 Time-Interleaved ADCs Forming a 12.5-Gb/s	
	ADC, a 2-Tap FFE and a 5-Tap DFE. [5]	31
	A Simple Diagram of the ADC-Based Receiver. [25]	32
	A Proposed Receiver Architecture. [26]	33
	An 8X Parallel Selection-Based 5-tap DFE. [26]	33
2.19	Block Diagrams of Embedded and Digital Equalizers. [27]	34

2.20	A Proposed Hybrid ADC-Based Receiver Architecture. [27]	35
2.21	A Suggested Single-Tap DFE Implanted Inside the ADC-Based Receiver. [28] .	35
2.22	Different Types of ADCs Architecture According to Resolution and Sampling	
	Rate. [30]	37
2.23	The Basic Architecture of a Flash ADC	38
2.24	A 4.5-Bit Flash ADC Architecture. [33]	40
		41
		42
2.27	A Time-Interleaved Analog-to-Digital Converter. (a) The Overall System Archi-	
	tecture. (b) Timing diagram. [42]	43
2.28	A Simple Symbol for the Clocked Comparator. [51]	45
2.29	A Schematic Diagram for the Dynamic StrongARM Comparator. [51]	45
2.30	The Timing Scheme for the StrongARM Comparator. [51]	46
2.31	A Schematic Diagram of the Conventional Double-Tail Dynamic Comparator. [47]	46
2.32	A Schematic Diagram of the CML Dynamic Comparator. [54]	47
3.1	(a) Current-Steering Differential Amplifier. (b) Charge-Steering Differential Am-	
		50
3.2		51
3.3		51
3.4	· · · · · · · · · · · · · · · · · · ·	52
3.5		53
3.6		53
3.7		54
3.8	A Schematic Diagram for the RS-Latch	55
3.9		56
3.10		58
3.11	The Designed Clocking System to Generate the Required Clocks	58
3.12	A Schematic for the Differential to Single-Ended Converter	59
3.13	A Schematic for the Reference Ladder	59
3.14	The Designed ADC in a Full-Rate Mode (Rate < 5 Gbps)	60
3.15	The Designed ADC in a Half-Rate Mode (5 Gbps < Rate < 10 Gbps)	61
3.16	The Designed ADC in a Quarter-Rate Mode (10 Gbps $<$ Rate $<$ 20 Gbps)	61
4.1	Outputs of Comparator Cores	63
4.2	· · · · · · · · · · · · · · · · · · ·	64
4.3		64
4.4		65
4.5	v	65
4.6	Frequency Response of Output for Sinusoidal Inputs of 4.84 GHz and 9.84 GHz	
		66
4.7		67

4.8	The Relation Between ENOB and Input Frequency	68
4.9	The Output Ramp From the ADC	68
4.10	The Differential Non-Linearity with the Digital Word	68
	The Integral Non-Linearity with the Digital Word.	69
4.12	The Layout of the D-Flip-Flop Used in Divider	70
4.13	The Layout of the Differential to Single-Ended Converter	71
	The Layout of the Timing System	71
	The Layout of the Proposed Comparator	72
4.16	The Layout of a Full ADC Branch with its DAC Circuit	72
	The Layout of the DAC Used in Measurement and Testing	73
	The Layout of the Resistive Reference Ladder	73
	The Layout of the Designed ADC.	74
	The Floor Plan of the Transceiver Chip	75
	The Spectral Density of the Extracted-ADC Output (with the Ideal Schematics	
	of the Clocking System)	76
5.1	(a) A Schematic of the DTLE Circuit. (b) The Track-and-Equalize Mode (CLK	
	= "High"). (c) The Hold Mode (CLK = "Low"). \dots	80
5.2	The DTLE with Leakage Blockers	81
5.3	The Overall Modified Architecture of the Digital Receiver Front End	82
5.4	A Schematic of the Simple Programmable Termination at the Receiver Front End.	83
5.5	A Schematic for Equivalent Model of 1-inch FR4 Channel. [15]	83
5.6	The Frequency Response of a 12-inch FR4 Channel	84
5.7	The Frequency Response of the DTLE Showing the Gain Boosting at 5 GHZ	84
5.8	The Eye Diagrams at the Receiver Input (Upper) and After DTLE (Lower)	84
5.9	The Frequency Response of the DTLE for Different Values of R_s and C_s	85
A.1	Conventional StrongARM Comparator	90
A.2	Proposed Charge-Steering Based StrongARM Comparator	91
A.3	Proposed StrongARM Comparator a) Reset Phase b) Start of Amplification-	01
11.0	Regeneration Phase c) Settling State During Amp-Reg Phase $(V_{in} > V_{ref})$	92
Δ 1	Clocking Scheme and Delay Components	92
A.5	Power Consumption versus Sampling Frequency	93
A.6	Power Consumption versus Input Common Mode Voltage	94
A.7	Delay versus Input Common Mode Voltage	94
A. <i>t</i> A. 8	Output Nodes Voltages of the Comparator and the RS latch	94
л.о	Output Nodes voltages of the Comparator and the R5 laten	94
B.1	Input and Output of the Simple and Hold Network	96
B.2	The Schematic of the Current Steering Digital to Analog Converter	96

List of Tables

2.1	ADC-Based Receiver Performance Comparison	36
2.2	Comparison Between Different Architectures of ADCs	42
4.1	Comparison Between the Proposed Comparator and StrongArm Comparator at	
	5 GHz	66
4.2	The Flash ADC Power Consumption Breakdown	69
4.3	ADC Performance Summary	69
4.4	Comparison Between this Work and Recently Reported Flash ADCs	70
5.1	DTLE Performance Comparison	85
A 1	Comparing conventional StrongARM with Our Proposed Comparators.	94