ENUMERATION, ISOLATION AND ELECTRON MICROSCOPIC STUDY OF HEMATOPOIETIC STEM CELLS FROM PERIPHERAL BLOOD OF PATIENTS WITH CHRONIC LIVER AFFECTION

Thesis
Submitted in Partial fulfillment for the Master Degree in
Clinical and Chemical Pathology

BY
AYAT SALAH EL-DIN MOHAMED
M.B., B.Ch

SUPERVISORS

PROF.DR. IMAN MAHER MANSOR
PROFESSOR OF CLINICAL PATHOLOGY
FACULTY OF MEDICINE, CAIRO UNIVERSITY

PROF.DR. LOBNA YOSSIF GHANEM
PROFESSOR OF CLINICAL PATHOLOGY
THEODOR BILHARZ RESEARCH INSTITUTE (TBRI)

DR. MANAL MOHAMED MAKHLOUF
LECTURER OF CLINICAL PATHOLOGY
FACULTY OF MEDICINE, CAIRO UNIVERSITY

FACULTY OF MEDICINE CAIRO UNIVERSITY 2009

ABSTRACT

Background: The contribution of HSCs to liver regeneration in different forms of liver injury remains debatable. Accordingly, many studies were carried out to verify whether various liver lesions (as liver resection, transplantation and acute and chronic forms of liver failure) can activate bone marrow by mobilizing peripheral blood hematopoietic stem cells (HSCs) (CD34/ CD133+ cells) putatively able to induce liver repopulation. Many conflicting data were reported.

<u>Aim of the work</u>: It is intended in this current study to determine the degree of mobilization of BM-derived HSCs into the peripheral blood of patients with chronic hepatic affection and correlating it with various grades of liver damage.

<u>Subjects and Methods:</u> this study was conducted on 30 patients with Child A, B and C grades of chronic liver disease (10 patients for each stage). 10 healthy subjects were enrolled as controls. The percent of circulating HSCs was determined by flowcytometric phenotypic analysis and compared among the different groups of patients. Also, isolation of such cells was done by magnetic cell sorting technique using the Mini-MACS separator for further ultrastructural assessment by Transmission Electron Microscopy (TEM).

Results: The chronic liver disease group, compared to the healthy control group, exhibited no significant difference in the percentage of circulating CD133⁺cells (0.419 % \pm 0.194, 0.419% \pm 0.252 and 0.277% \pm 0.160 in Child A, B and C respectively versus 0.456 % \pm 0.119 in control). Regarding the level of CD34+ cells, a statistically significant increase was found between child A chronic liver disease group and control group (mean \pm SD; 1.183% \pm 0.785 in child A versus 0.519% \pm 0.201 in control group) (p<0.05). However no statistical significant difference could be found between Child B and C chronic liver disease patients and control group or between each other (0.532% \pm 0.370 and 0.768% \pm 0.332 in Child B and C respectively vs. 0.519% \pm 0.201 in healthy controls). It was even found that in Child C, circulating HSC levels were decreased, though not significantly, as compared to the healthy subjects as well as to the milder Child A and B liver patients. Ultrastructural characteristics of isolated cells were compared in healthy and hepatic patients. The cells described in both groups were generally similar in appearance with no evidence of structural changes. TEM analysis revealed typical features of an immature phenotype.

<u>Conclusion:</u> Our data showed that chronic lesions of any degree of severity did not evoke bone marrow (BM) to mobilize HSCs into the circulation This could be due to: i) Defective hemopoiesis usually encountered in chronic liver diseases or ii) The toxic mileu of the chronic-damage liver interfering with extrahepatic stem cell-mediated liver repair. The recovery process seems to be mainly dependent on proliferating endogenous liver progenitors. Hence defining the underlying mechanisms interfering with BM activation and HSC mobilization is warranted.

Key words: HSCs, CD133/34, Chronic liver diseases

Table of contents

Introduction and aim of the work	1		
WOIK	4		
Review of Literature	4		
Chapter 1: General features of stem cells	4 5		
	5		
Definition	5		
Classification and	6		
Sources	6_		
A-Embryonic stems (ES)	7		
cells	9 10		
B-Embryonic germ (EG)	10		
cells	12		
C-Fetal stem cells			
O-I etal stelli cells			
D-Umbilical cord stem	15		
cells			
E-Adult stem	15 16		
cells			
Plasticity of adult stem			
cells	21		
Possible mechanisms for	22		
plasticity	34		
Adult versus Embryonic Stem			
Cells	36		
Stem Cell	36		
	36		
Microenvironment	38		
Stem Cell Niche			
Chapter 2: Hematopoietic Stem Cells (HSCs)	40 40		
Features of	41		

HSCs	42			
Hematopoietic Stem cell				
markers				
Migration of hematopoietic stem cells into and out of marrow				
and	49			
tissues	40			
Identification and isolation of hematopoietic stem	49 49			
cells	. •			
Morphology of hematopoietic stem	50			
cells	56			
Chapter 3: Stem Cells And The				
Liver				
1-Liver Structure	60			
Liver				
architecture	70			
Hepatic stem cell	00			
compartment	93 103			
2- Liver Regeneration	100			
2.1 Liver regeneration during normal	105			
turnover	107			
2.2 Liver regeneration after hepatic	101			
injury	108			
injury				
regeneration				
A- Evidence in support of oval cells contributing to liver regeneration				
B- Evidences suggested the Role of Bone Marrow- Derived stem cells in Liver				
Repair C-Umbilical cord –derived stem				
cells				
D-Fetal liver stem cells				
E-Embryonic stem				
cells				

3-Mecanism		Kinet 	ic	of	Mobili	zation	of	
4-Clinical	Trial	Of E	ВМ	Treatn	nent	In	Liver	
Diseases								
Participar	nt						and	
Methods								
					· -			
Results								
Discussion								
Summary								
Conclusion								
Recommendation								
Reference	s							
الملخص العربي								

List of abbreviations

5-FU	5- fluorouracil
AAF	Acetyl aminofluorene
AFP	Alpha feto protein
ALDH	Aldehyde dehydrogenase
AS	Adult stem cell
ВМ	Bone marrow
BMSCs	Bone marrow derived stem cells
ВМТ	Bone marrow transplantation
С/ЕВРВ	Transcription factor
СВС	Complete blood count
CCI ₄	Carbon tetra chloride
CXCR4	Chemokine receptor
CDE diet	Choline deficient/ethionine-containing diets
CK19	Cytokeratin 19
DDPIV	Dipeptidyldipeptidase-IV
D-galN	D-galactosamine
EG cells	Embryonic Germ Cells
EGF	Epidermal growth factor
ES cells	Embryonic stem cells
FACS	Fluorescence activated cell sorting
FAH	Fumarylactoactate hydrolase (FAH) (-/-)
G-CSF	Granulocyte-colony stimulating factor
GFP	Green fluorescent protein

HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HGF	Hepatocyte growth factor
Ho-33342	Hoechst 33342 dye
HSCs	Hematopoietic stem cells
ICM	Inner cell mass
IL-6	Interleukin 6
INR	International normalized ratio
MMP-9	Matrix metalloproteinase-9
MSCs	Mesenchymal stem cells
NK cells	Natural killer cells
NOD/SCID	Non obese diabetic severe combined immune
	deficiency
OLT	Orthotopic liver transplantation
PG	Primordial germ
PH	Partial hepatectomy
PT	Prothrombin time
RBCs	Red blood cells
Rho-123	Rhodamine- 123
SDF-1	Stromal derived factor-1
TGF-α	Transforming growth factor-alpha
TGF-β1	Transforming growth factor-beta 1
TNF- α	Tumor necrosis factor-alpha
UCB	Umbilical cord blood

List of Figures

Figure No	Title	Page
Figure 1	Plasticity of adult stem cells	10
Figure 2	Models of stem cell plasticity	12
Figure 3	Immunomagnetic labeling and separation of human CD34 ⁺ cells by EasySep TM positive selection	29-30
Figure 4	Immunorosette formation and depletion of lin+ cells using RosetteSep TM	33
Figure 5	Ultrastructure of Rh/Ho dull cell.	35
Figure 6	Lobular structure of the liver.	37
Figure 7	Different levels of progenitor cells in adult liver.	42
Figure 8	Factors regulating BMSCs homing to the liver.	55
Figure 9	Model of flowcytometer graphs.	66
Figure10	The mean of CD 133 in the selected groups and control.	82
Figure11	The mean of CD34 in the selected groups and control.	82
Figure12	Flowcytometric analysis of PBMCs of child A patients before enrichment.	84
Figure13	Flowcytometric analysis of the cells of child A patients after enrichment.	84
Figure14	Transmission electron microscope (TEM) micrograph showing a primitive stem cell in isolated population of PBMCs from patients with Child A chronic liver disease.	88
Figure15	Another stem cell from the same sample (Child A chronic liver disease)	89
Figure16	An ultrastructural photomicrograph of a stem cell viewed in PBMC preparation isolated from a healthy subject.	90

	A TEM micrograph of another stem cell from a healthy subject.	0.
Figure18	A primitive stem cell from a Child C chronic liver patient.	92

List of tables

aTable No	Title		
Table 1	Proposed cell surface markers of undifferentiated hematopoietic stem cells	17	
Table 2	Positive selection of CD34+ cells from umbilical cord blood (UCB) and from mobilized and normal steady state peripheral blood (PB) using immunomagnetic separation without a column.	28	
Table 3	Characteristics of the control group		
Table 4	Characteristics of all patient groups		
Table 5	Characteristics of the three groups of chronic liver disease patients	78-79	
Table 6	Comparison between hematological data of all patient groups(Child A, B, C) and control group	80	
Table 7	Comparison of CD133 ⁺ and CD34 ⁺ cell percentages between all patient groups (Child A, B and C) and control group.	81	

ACKNOWLEDGEMENT

I would like to thank ALLAH a lot for his kindness, patience and strength he gave to me to achieve this work and made me able to finish it.

I am greatly honored to express my deep gratitude and faithfulness to **Dr. Lobna Yossif Ghanem**, Professor of Clinical Pathology, Theodor Bilharz Research Institute, for her strict supervision and revision of this work. She gave me her valuable advices and support that cannot be expressed in words. Her encouragements were so supportive for the completion of this work.

I would like to express my deepest gratitude to **Dr. Iman Maher Mansour**, Professor of Clinical Pathology, Cairo University, for her sincere guidance and her help and support throughout the work.

I am extremely grateful to **Dr. Manal Mohamed Makhlouf**, lecturer of Clinical Pathology, Cairo University, for giving me much of her time, experience and support, her valuable comments and efforts

I would like to thank all my staff members of the Electron Microscopy Department in Theodor Bilharz Research Institute, especially **Dr. Hoda Yehia**, the head of the department, for her continuous guidance, faithful advices encouragement and support for me and my colleagues.

A special dedication to my family for their never ending care, wishing them all the happiness and good health.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Stem cells are defined functionally as regeneration units responsible for the development and regeneration of tissues and organs, being capable of both self-renewal and multilineages differentiation (Smith, 2001; Weissman *et al.*, 2001).

Adult stem cells are present in a variety of organs including bone marrow. Their role is to replenish multiple mature differentiated cell types and thereby achieve long-term tissue reconstitution (Robey, 2000).

Hematopoietic stem cells (HSCs), as an example of adult stem cells, are approved to be able to differentiate into cells in other lineages that constitute various tissues, a property known as plasticity (Anderson *et al.*, 2001).

As regards the liver, a close relation between liver consisting cells and hematopoietic cells has been reported (Lagasse *et al.*, 2000; Quintana *et al.*, 2006). In this respect, recent data have shown that oval cells (the hepatic progenitor cells within the terminal branches of the intralobular biliary tree known as the canals of Hering) may be derived from a population of HSCs originating in the bone marrow (Roskams *et al.*, 2004). This is evidenced by expression of hematopoietic markers (CD34, C-kit) on oval cells (Grisham and Thorgeirsson, 1997) and the shared effect of hepatocyte growth factor on hematopoiesis & hepatopoiesis (Nishino *et al.*, 1996).

Furthermore, evidence from human & animal model bone marrow transplantation studies has suggested hepatocyte differentiation of transplanted bone marrow derived stem cells (BMSCs) after acute or chronic liver injury (Petersen *et al.*, 1999; Theise *et al.*, 2000).

It has thus been hypothesized that hepatic injury may constitute a trigger to mobilization of HSCs putatively able to differentiate into hepatocytes, thus starting the recovery process of the liver (De Silvestro *et al.*, 2004).

However, inspite of the documented improved regeneration of hepatocytes and fibrosis resolution in bone marrow transplantation studies, current evidence has denied hepatocyte regeneration from transplanted BMSCs and has not demonstrated a stable or long-term engraftment (Duffield *et al.*, 2005; Oyagi *et al.*, 2006).

Some reporters have explained such conflicting results by the fact that BMSCs may support liver repair only through delivery of growth factors that promote liver regeneration, fibrosis resolution or new blood vessel formation (Ueno *et al.*, 2006; Xia *et al.*, 2006). However, the toxic milieu of the diseased liver may hamper the direct differentiation of stem cells into hepatocyte population (Kallis *et al.*, 2007).

Therefore, before this phenomenon of transdifferentiation of BMSCs to hepatocytes can be used clinically, several issues have to be resolved. Primarily it is necessary to establish the relationship between the degree of bone marrow (BM) activation to mobilize HSCs, destined to migrate to the injured hepatic tissue, and the severity of liver disease which is the triggering signal for mobilization of BMSCs.

Aim of the work:

It is intended in this current study to determine the degree of mobilization of BM-derived HSCs into the peripheral blood of patients with chronic hepatic affection and correlating it with various grades of liver damage. This aims at the following:

- Demonstrating that mobilized HSC count could serve as a prognostic marker to evaluate the extent of liver damage.

- Providing a baseline to preview the current status of stem cells mobilization in patients with liver disorders before clinical trials of administration of BMSCs or granulocyte-colony stimulating factor (G-CSF).