EFFECT OF SOME ORGANIC FERTILIZER TREATMENTS ON GROWTH AND PRODUCTIVITY OF SOME HUSK TOMATO CULTIVARS

By

AHMED EL SAYED HAMZA OSMAN

B. Sc. Agric. Sc. (Vegetable Crops), Cairo University, 2004M. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Advanced Agricultural Systems for Arid Lands)

Department of Arid Lands Faculty of Agriculture Ain Shams University

EFFECT OF SOME ORGANIC FERTILIZER TREATMENTS ON GROWTH AND PRODUCTIVITY OF SOME HUSK TOMATO CULTIVARS

By

AHMED EL SAYED HAMZA OSMAN

B. Sc. Agric. Sc. (Vegetable Crops), Cairo University, 2004M. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2012

Under the supervision of:

Dr. Ayman Farid Abou-Hadid

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Usama Ahmed El-Behairy

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Sayed Mahmoud Singer

Researcher Prof. Emeritus of Vegetable Crops, Department of Vegetable Research, Agricultural and Biological Division, National Research Center (The late)

ABSTRACT

Ahmed El Sayed Hamza Osman: Effect of Some Organic Fertilizer Treatments on Growth and Productivity of Some Husk Tomato Cultivars. Unpublished Ph.D. Thesis, Department of Arid Lands, Faculty of Agriculture, Ain Shams University, 2017.

Two field experiments were carried out during the two successive growth seasons of 2013 and 2014 in Abu-Ghaleb-Giza governorate (58 Km north Cairo from the desert road). The experiment include 15 treatments which were the simple combination between five levels of organic nitrogen Fertilizer (100% organic, 75% organic + 25% mineral, 50% organic + 50% mineral, 25% organic + 75% mineral and 100% mineral), with three husk tomato cultivars (Toma Verd, Pi1291561 and local one), The obtained results indicated that, the two foreign cultivars resulted have more plant growth measurements (height of plant, leaves and shoots number per plant, fresh and dry weight of whole plant) over the local cultivar. Within the two foreign cultivars Toma Verd, gained the more vigoursity than Pi1291561 cultivar. Also, the highest values of fruits, early, marketable and un-marketable of husk tomato, all of them were correlated to growing Toma Verd cultivar. The physical fruits quality (weight, diameter and size of fruit) recorded their highest values with cultivation foreign cvs. However local cultivar produced the highest values of dry matter, TSS values and Vit. C content. The foreign cultivars resulted the highest values of N, P, K and total acidity values. Concerning to addition of different percents of organic nitrogen, the decreasing organic parts in nitrogen mixture gained an increase in all plant growth measurement (plant height, leaves and shoots number, and dry weight of plant. That plants which recorded its nitrogen requirements as 100% mineral form resulted the earliest flowering and the highest flowers number. Moreover, total fruits yield and its marketable, un-marketable one were correlated with increasing the percent of mineral nitrogen in

fertilizing mixture. It could be summarized that, the heaviest husk tomato fruits yield were produced with that plants which received 100% as mineral nitrogen. The physical fruits properties (fruits weight, diameters, and size) as well mineral values (TSS, total acidity, N, P and K contents), all of these criteria's were detected with that plants which recorded its nitrogen needs as mineral form (100%).

Key words: Productivity, Husk Tomato, Cultivars, Organic, mineral, Fertilizer.

ACKNOWLEDGEMENT

Praise and thanks to ALLAH, who guided and helped us to achieve this work.

The writer wishes to express his gratitude and sincere thanks to **Prof. Dr. Ayman Farid Abou-Hadid,** Professor Emeritus of Vegetable Crops and Former Minister of Agricultural, Egypt, for his supervision, kind help, follow up and constructive ideas and advice.

Deepest and sincere gratitude and appreciation to **Prof. Dr. Usama Ahmed El-Behairy** Professor of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University, for his kind supervision, valuable assistance, moral and faithful attitude during the preparation of this manuscript.

Sincere and deep gratitude to **Prof. Dr. Sayed Mahmoud Singer,** Professor Emeritus of Vegetable Crops, National Research Centre, for his supervision, encouragement, and valuable helping throughout this study.

Sincere thanks, gratitude and appreciation to. Prof. Dr. Omaima Mohamed Sawan, Prof. Dr. Abd El-Moatey Mohamed Shaheen and Prof. Dr. Fatma Rizk Professor Emeritus and Dr. Emad El Dein Hassanein, Assistant Prof. of Vegetable Crops, National Research Centre, for his Kind, helpful and guidance through in this work.

My grateful thanks to **all staff members of Vegetable Research Dept.,** National Research Centre, for their kind help and facilities granted during this work.

My grateful thanks also to all staff members of Arid and Agricultural Research and Service Center, Faculty of Agriculture, Ain Shams University, for their kind help and facilities granted during this work.

My heart full of thanks and sincere appreciation to **my family** (**my father, brother and my sisters**), for their helpful support and encouragement all over my life.

Sincere gratitude is expressed to **my beloved wife** for her encouragement, support and patient through all the hard times.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1	Effect of Organic fertilization	3
2.1.1	Vegetative plant growth	3
2.1.2	Flowering fruits	7
2.1.3	Fruits yield	8
2.1.4	Fruits characteristics	17
2.2	Effect of cultivars	20
2.2.1.	Vegetative plant growth	20
2.2.2.	Flowering traits	21
2.2.3	Fruits yield	22
2.2.4	Fruits characteristics	26
2.3	Effect of the interaction	28
2.3.1	Vegetative plant growth	28
2.3.2	Flowering and fruits yield	29
2.3.3	Fruits characteristics	30
3.	MATERIALS AND METHODS	32
3.1.	Plant materials	32
3.2.	Studied Characteristics	33
3.2.A	Vegetative growth characteristics	33
3.2.B.	Flowering	33
3.2.C.	Fruits yield and its components	35
3.2.D.	Fruit characteristics	35
3.2.D.a.	Physical parameters	35
3.2.D.b.	Chemical components	36
3.3.	The experimental design	36
3.4.	Statistical analysis	37
4.	4. RESULTS AND DISCUSSION	38
4.A.	Vegetative plant growth characteristics	38
4.A.1.	Plant height	38

		Page
4. A.2.	Number of leave	39
4.A.3	Number of shoots	41
4.A.4	Fresh weight of whole plant	42
4.A.5.	Dry of whole plant	43
4.B.	Flowering traits	45
4.B.1.	Number of days to begin flowers (earliness of	
	flowering	45
4.B.2	Number of flowers per plant	47
4.C.	Fruit yield and its components	49
4.C.1.	Number of fruits per plant	49
4.C.2.	Early fruits yield (tons/fed.)	50
4.C.3.	Fruits yield (kg/ plant)	51
4.C.4.	Total fruits yield (tons/ fed)	53
4.C.5.	Marketable fruits yield (ton/fed.)	54
4.C.6.	Un-marketable fruits yield (ton/fed.)	55
4.D.	Fruits characteristics	60
4.D.1.	physical properties	60
4.D.1.a	Average of fruit weight	60
4.D.1.b	Diameter of fruit	61
4.D.1.c.	Size of fruit	62
4.D.2.	Chemical properties	63
4.D.2.a	Dry matter percentage	63
4.D.2.b	Total soluble solids (TSS)	65
4.D.2.c	Total titratable acidity	66
4.D.2.d	Ascorbic acid content	67
4.D.2.e.	Fruits mineral contents	69
5.	SUMMRY AND CONCLUSION	74
6.	REFERENCES	80
7.	ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (1)	physical and chemical properties of experimental soil	34
Table (2)	Chemical properties of Nile compost used in this study	35
Table (3)	Effect of different cultivars and organic nitrogen ratios on plant height of husk tomato during two	39
Table (4)	seasons. Effect of different cultivars and organic nitrogen ratios on number of leaves (Nos. /plant) of husk tomato during two seasons.	40
Table (5)	Effect of different cultivars and organic nitrogen ratios on shoots number/plant of husk tomato during two seasons.	41
Table (6)	Effect of different cultivars and organic nitrogen ratios on total fresh weight of whole husk tomato plant (g/plant) during two seasons.	42
Table (7)	Effect of different cultivars and organic nitrogen ratios on total dry weight of whole husk tomato plant (g/plant) during two seasons.	43
Table (8)	Effect of different cultivars and organic nitrogen ratios on number of days from transplanting to begin flowers of husk tomato during two seasons.	46
Table (9)	Effect of different cultivars and organic nitrogen ratios on number of flowers/plant of husk tomato during two seasons.	47
Table (10)	Effect of different cultivars and organic nitrogen ratios on average number of fruits/plant of husk tomato during two seasons	50

		Page
Table (11)	Effect of different cultivars and organic nitrogen	
	ratios on early yield (ton/fed.) of husk tomato	51
	during two seasons.	
Table (12)	Effect of different cultivars and organic nitrogen	
	ratios on plant yield (Kg/plant) of husk tomato	52
	during two seasons.	
Table (13)	Effect of different cultivars and organic nitrogen	
	ratios on total yield (ton/fed.) of husk tomato	54
	during two seasons.	
Table (14)	Effect of different cultivars and organic nitrogen	
	ratios on marketable yield (tons/fed.) of husk	55
	tomato during two seasons.	
Table (15)	Effect of different cultivars and organic nitrogen	
	ratios on unmarketable yield (ton/fed.) of husk	56
	tomato during two seasons.	
Table (16)	Effect of different cultivars and organic nitrogen	
	ratios on average fruit weight (g/fruit) of husk	61
	tomato during two seasons.	
Table (17)	Effect of different cultivars and organic nitrogen	
	ratios on fruit diameter (cm) of husk tomato	62
	during two seasons.	
Table (18)	Effect of different cultivars and organic nitrogen	
	ratios on fruit size (cm3/fruit) of husk tomato	63
	during two seasons.	
Table (19)	Effect of different cultivars and organic nitrogen	
	ratios on dry matter percentage of husk tomato	64
	fruits during two seasons.	
Table (20)	Effect of different cultivars and organic nitrogen	
	ratios on TSS of husk tomato fruits during two	66
	seasons.	

		Page
Table (21)	Effect of different cultivars and organic nitrogen	
	ratios on total titratable acidity of husk tomato	67
	during two seasons.	
Table (22)	Effect of different cultivars and organic nitrogen	
	ratios on vit.c (m/100 ml.) of husk tomato	78
	during two seasons.	
Table (23)	Effect of different cultivars and organic nitrogen	
	ratios on fruits N, P and K content of husk	71
	tomato fruits during the two seasons of 2013	/1
	and 2014.	

INTRODUCTION

Husk tomato (*Physalis pubescens* L.) is one of the most important vegetable crops in Egypt. The husk tomato belongs to the nightshade family (Solanaceae). The genus Physalis, established by Linnaeus in 1753, contains about 463 species but 100 species are well known and have more fanciful names such as golden berry, ground cherry, strawberry tomato, cape gooseberry and pubescent ground cherry, (**El Sheikha, 2010**), bladder cherry, Chinese Lanterns, and tomatillo. Physalis has been known in Egypt since the sixteen century under the name of its varieties 'Harankish', 'Halawyat' and 'El-Set El-Mestihya'. Because the fruit is covered in papery husk; giving it its name (**El Sheikha** *et al*, **2010**).

Husk tomato plants produce small orange fruits similar in size and shape to a cherry tomato. It is a highly nutrition fruit; low in fat and contains no cholesterol or sodium. Husk tomato fruits provide an excellent source of the vitamin A and C, minerals (phosphorus and iron), protein, carotene, sugars and organic acids because of this they are a good choice for making health (**Mustafa, 2009**). Medical and edible applications of (*Physalis peruviana*) cape gooseberry are used in folk medicine for treating diseases such as malaria, asthma, hepatitis, dermatitis, diuretic and rheumatism.

Husk tomato is considered as an important non-traditional horticultural crop in Egypt for both local consumption and exportation. It is cultivated through limited areas near the large and main Egypt. Also, it cultivated in Toshki. About 300 feddan are cultivated with husk tomato in Egypt, producing 3000- 4500 tons (**Agricultural statistics newsletters**, **1996**). Farmers may get good income by exporting it to many other countries all over the world. Nowadays in Egypt, a great attention is given for promoting husk tomato production to meet the progressive demands of local fresh market, medicinal purposes, developing processing industry and rapidly growing exportation. Therefore, more attention was paid to