

Effect of Morbid Obesity Surgery on the Liver

Essay

Submitted in partial fulfillment for Master Degree

In General Surgery

By

Ahmed Taha Mohamed

M.B.B.Ch., Faculty of Medicine, Zagazig University

Supervisors

Prof. Sayed El-Mahrakawy

Professor of General Surgery Faculty of Medicine Ain shams University

Prof. Mahamoud Zakaria

Assistant.Professor of General Surgery
Faculty of Medicine
Ain shams University

Dr. Mohamed Ahmed Aboul Naga

Lecturer of General Surgery Faculty of Medicine Ain shams University

Faculty of Medicine Ain shams University 2016

قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ الْحَكِيمُ الْحَكِيمُ

سورة البقرة - الآية [32]

Acknowledgment

First of all, thanks to ALLAH, the Most Gracious, Most Merciful, for success in achieving work in my life, and for guiding me and giving me the strength to complete this work the way it is.

I would like to express my deepest thanks, gratitude and appreciation to **Prof. Dr. SAYED EL.MAHRAKAWY** Professor of General Surgery, Faculty of medicine, Ain shams University, to whom I am greatly indebted and deeply grateful for his constant supervision and encouragement together with his valuable suggestions. He gave me much of his unlimited experience which helped me to perform this work.

I am really grateful and indebt to **prof Dr./ MAHAMOUD ZAKARIA**, Assistant Professor of General Surgery, Faculty of medicine, Ain shams University, for his kind supervision, support, help and his continuous guidance, correction and explanation.

Words fail to express my sincere thanks and appreciation **D.r/ MOHAMED AHMED ABOUL NAGA**, Lecturerof General Surgery Faculty of medicine, Ain shams University, for his generous encouragement, valuable suggestion, good support, meticulous continuous supervision and unlimited help during this work.

I would like to thank my colleagues and all members of the General Surgery departments, Ain shams University for their valuable cooperation; encouragement and kind help throughout

Contents

List of Abbreviations	i
List of Tables	V
List of Fig.s	vi
Introduction and Aim of the Work	1
Fatty Liver Disease in Obese Patient	5
Pathophysiology of Liver in Obese Patient	21
Surgical Treatment of Morbid Obesity	49
Improvement of Liver after Surgery	103
Summary	125
References	128
Arabic Summary	

List of Abbreviations

ALT	Alanine Aminotransferase.
ANA	antinuclear antibody
ASMA	antismooth muscle antibody
AST	Aspartate Aminotransferase.
ATP	Adult Treatment Panel.
AUROC	Area under reciver operating characteristic.
BMI	Body mass index.
BPD	Biliopancreatic Diversion.
CCK	Cholecystokinin.
ChREBP	carbohydrate responsive element
	binding protein.
CK	cytokeratin.
CoA	coenzyme A.
CPT	carnitine palmitoyl transferase.
CT	Computerized Tomography.
DGAT	diacylglycerol acyltransferase.
DNL	de novo lipogenesis.

List of Abbreviations (Cont.

DS	Duodenal Switch
DVT	Deep venous thrombosis.
ECG	Electrocardiogram.
ELF	Enhanced liver fibrosis.
ELISA	Enzyme-linked immunosorbent assay.
FA	fatty acid.
FAO	Fatty acid oxidation
FFA	Free fatty acid.
FXR	farmesoid X receptor
GIP	Gastrointestinal Peptide.
HDL	High density lipoprotein.
IGT	impaired glucose tolerance.
IHTG	intrahepatic triglyceride.
IR	insulin resistance.
LAGB	Laparoscopic Adjustable Gastric Banding.

List of Abbreviations (Cont.

LRYGB	Laparoscopic Roux-en-Y Gastric
	Bypass.
LSG	Laparoscopic sleeve gastrectomy.
MRI	Magnetic Resonance Imaging.
NAFLD	nonalcoholic fatty liver disease
NAS	NAFLD activity score.
NASH	nonalcoholic steatohepatitis
NASH	NASH Clinical Research Network
CRN	
NIDDM	noninsulin dependent diabetes mellitus.
OR	odds ratio
PPAR	peroxisome proliferator activated
	receptor.
PTH	Parathyroid Hormone.
RCT	randomized controlled trial.
RYGB	Roux-en-Y Gastric Bypass.
SG	Sleeve Gastrectomy.

List of Abbreviations (Cont.

SREBPs	sterol regulatory element binding
	proteins.
T2DM	type 2 diabetes mellitus
TG	triglyceride.
TZDs	Thiazolidinediones.
UDCA	ursodesoxycholic acid.
VLDL	very low-density lipoprotein.

List of tables

Table	Title	Page
1	Summary of Grading and Staging	9
	for NASH	
2	Risk factors associated with NAFLD	11
3	Diagnosis of nonalcoholic steatohepatitis using abdominal ultrasound	16
4	Indications for bariatric surgery and patient selection	51
5	Relative contraindications for bariatric surgery	52
6	Types of commonly performed bariatric operations by mechanism of action	60
7	Indications for conversion from laparoscopic to open surgery	61
8	Effects of LRYGB on clinical and biochemical measurements	112
9	Effects of LRYGB on histological parameters	113
10	Impact of Weight Loss Surgery on Metabolic Syndrome (n _ 70)	115
11	Changes of Surgical Weight Loss on Physical and Biochemical Characteristics of Patients (n _ 70	116
12	Preoperative and Postoperative Liver Grade and Stage	117

List of Figures

Fig.	Title	Page
1	The role of insulin resistance, free	12
	fatty acids, obesity, and diabetes in	
	the development and progression of	
	nonalcoholic fatty liver disease	
	(NAFLD)	
2	Liver histology demonstrating	19
	moderate macrovesicular steatosis	
3	Alterations in cellular FA transport	26
4	Physiological interrelationships	30
	among FA metabolism, insulin	
	resistance, dyslipidemia, and IHTG	
	content in NAFLD.	
5	Total VLDL-TG secretion rate	32
6	Relationship between VLDL-TG	33
	secretion rate and IHTG content in	
	subjects with normal IHTG	
7	The Multi-hit hypothesis of NAFLD	37
	pathogenesis.	
8	Concept of metabolic syndrome.	39
9	Vertical banded gastroplasty	62
10	Laparoscopic adjustable gastric	65
	banding	
11	Sleeve gastrectomy	68
12	Performance of sleeve gastrectomy	69
13	Biliopancreatic diversion	72
14	Duodenal switch	73
15	Roux-en-Y gastric bypass	76
16	Port scheme for laparoscopic gastric	83
	bypass	

List of Figures (Cont.)

Fig.	Title	Page
17	Passage of the Roux limb toward the stomach	85
18	Creation of gastric pouch for laparoscopic Roux-en-Y gastric bypass	86
19	Linear stapled technique for gastrojejunal anastomosis	87
20	Leak from gastrojejunal anastomosis	93
21	Endoscopic view of an anastomotic stricture before and after balloon dilatation	98
22	Individual change of nonalcoholic fatty liver disease activity score (a) and fibrosis stage (b) after surgery	114
23	Representative histologic sections of a liver biopsy before bariatric surgery	123
24	A liver biopsy after 13 months postbariatric surgery. with no evidence of steatosis	124
25	Another liver biopsies pre and postbariatric surgery	124

Introduction

Morbid obesity is defined as a body mass index (BMI) greater than 40 kg/m2 or a BMI greater than 35 kg/m2 with associated complications including, but not limited to, diabetes, hypertension, or obstructive sleep apnea. It is a very serious condition that effect on the health, causing increase in morbidity &mortality rate either due to obesity itself or obesity related diseases. The pathophysiology of obesity is complex and poorly understood, but it includes genetic, behavioral, psychological, and other factors. Family studies suggest that heredity may explain 67% of the population variance in BMI. However, genetic factors are unlikely to account fully for the rapid increase in the prevalence of obesity. Declining rates of physical activity and increases in the consumption of energy dense foods may play a role (Ledikweet al., 2006).

Morbid obesity is the most significant risk factor for the development of non-alcoholic fatty liver disease (NAFLD), a term that encompasses a spectrum of liver pathology ranging from fatty liver alone (hepatic steatosis) to concomitant hepatic inflammation (non-alcoholic steatohepatitis or NASH). Although it is a relatively benign condition, hepatic steatosis increases risk of developing NASH whichmay then progress to more advanced stages of liver disease such as fibrosis and cirrhosis. NAFLD is estimated to occur in 30 to 100% of obese adults and is associated with hepatic enlargement (hepatomegaly), elevated serum aminotransferase levels and insulin resistance (Clouston et al., 2005).

The first treatment of morbid obesity is dietary and lifestyle changes. Although this strategy may be effective in

some patients, only a few morbidly obese individuals can reduce and control weight through diet and exercise. The majority of patients find it difficult to comply with these lifestyle modifications on a long-term basis. When conservative measures fail, some patients may consider surgical approaches (**August et al., 2008**).

Surgery for obesity, termed bariatric surgery(from the Greek wordbaros, which means weight), is a treatment for morbid obesity in patients who fail to lose weight with conservative measures. There are numerous different surgical techniques available. These different techniques have heterogeneousmechanisms of action, with varying degrees of gastric restriction that creates a small gastric pouch, malabsorption of nutrients, and metabolic changes that result from gastric and intestinal surgery. Besides its positive effects on weight loss and its acceptable rates of weight-loss maintenance, bariatric surgery isthe treatment offering the best cost-effectivenessratio in the medium term. The bariatric surgery procedures including different types e.g.: Sleeve gastrectomy, Mini-Gastric **Bypass** and Gastric Bypass(Aikenhead et al., 2011).

There is an improvement of the cases after surgical treatment than medical treatment as part of the major prospective SOS study, compared patients who had undergone open surgery with patients who had followed medical(non-surgical) therapy. The results show that, at one year, the surgicalpatients had lost more weight than those inthe conventionally treated group. The majorbenefit of bariatric surgery was maintained aftersix years, compared with weight gain In terms of weight reduction alone, the SOSstudy shows that bariatric surgery is moreeffective than non-surgical treatment. on examination of The effect of significant weight loss on nonalcoholic fatty liver disease,

Introduction and Aim of the Work

including nonalcoholic steatohepatitis (NASH) and hepatic fibrosis by had paired liver biopsies, the first at the time of surgery and the second after weight loss, There were major improvements in lobular steatosis, inflammatory changes, and fibrosis at the second biopsy (ElisaFabbrini et al., 2010).

In the other study of 70 patients who underwent repeat liver biopsy after dramatic weight loss, we demonstrate significant and wide spread improvement, or resolution, of NAFLD and NASH. More than one-third of the patients had postoperative liver biopsies that showed resolution of steatosis and inflammation, and 20% of the patients had at least some reversal of fibrosis. No patient experienced a progression of abnormal liver morphology or a deterioration of hepatic function, as indicated by persistently normal liver enzymes. The results are highlight the important role that obesity and, by extension, the metabolic syndrome plays in the NAFLD disease process. Conversely, The data also show the profound beneficial effect that weight loss, possibly by the associated amelioration of comorbidities, has on the reversal of steatosis and fibrosis. Additionally, they have been able to achieve these outcomes safely, with no mortality and minimal morbidity (Choudhury and Sanyal 2004).

In conclusion, weight loss after surgery provides major improvement or resolution of obesity and metabolic syndrome-associated abnormal liver histological features in severely obese case (ElisaFabbrini ET AL., 2010).

Introduction and Aim of the Work

Aim of the Work

The aim of this work is to clarify the effect of obesity on the liver & the role of surgery in management of fatty liver disease.