LUMBAR DISC PROLAPSE IN YOUNG POPULATION

Essay
Submitted for the partial fulfilment of
M. Sc. In General Surgery

Submitted by

Medhat Mohsen Safwat (M.B., B.Ch.)

Under Supervision of

PROF. DR. SAMIR ABD ELHAMEED GALAL

Professor of General Surgery Faculty of Medicine, Cairo University

PROF. DR. AHMED MOHAMED EISSA

Professor of Neurosurgery
Head of Neurosurgery Department
Faculty of Medicine, Cairo University

DR.HESHAM MOHAMED HOZAYEN

Assistant Professor of Neurosurgery Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2011

Abstract

Common causes of back pain include nonspecific pain or muscle strain, herniated disk, spondylolysis, scoliosis, and Scheuermann's kyphosis. Less common causes include tumor, Infection and sickle cell crisis.

If nonspecific back pain is suspected, treatment may include homebased exercise, physical therapy, or nonsteroidal anti-inflammatory drugs.

If the history And physical examination suggests underlying pathology, radiography, complete blood count, erythrocyte sedimentation rate and a C - reactive protein measurement should be performed.

Follow-up magnetic resonance imaging, computed tomography, or bone scanning may be needed depending on the suspected cause.

It is generally accepted that the following factors warrant immediate evaluation: patient age younger than four years, persistent symptoms, Self-imposed activity limitations, systemic symptoms, increasing discomfort, persistent nocturnal pain, and neurologic symptoms.

Key Words:

Annulus fibrosus - Gadolinium - Nucleus pulposus .

ACKNOWLEDGEMENT

First of all, I must thank ALLAH "the most gracious and the most merciful" for his indescribable and unlimited aid in this work.

Then, I would like to express my deepest gratitude to **Prof. Dr. Ahmed Eissa,** *Head of Department of Neurosurgery in Cairo University*, for his help and advice in writing this essay.

I am so greatly indebted to **Prof. Dr. Samir Abd Elhameed Galal,** *Professor of General Surgery, Cairo University*, for his advices and guidance, and under his supervision I had the honor to proceed with this work.

Special thanks and gratitude are due to **Dr. Hesham**Mohamed Hozayen, Assistant Professor of Neurosurgery,

Cairo University, his fruitful modifications have led to the proper accomplishment of this work.

Last but not least I would like to extend my thanks to my wife who supported me a lot in producing this work.

Medhat M. Safwat 2010

LIST OF ABBREVIATIONS

AF : Annulus fibrosus

ALL : Anterior longitudinal ligament

C.T. : Computerized tomography

CSF : Cerebro-spinal fluid

EMG : Electromyography

ENG : Conventional neurography

ESR : Erythrocyte sedimentation rate

FNST: Femoral nerve stretch test

FSU : Functional spinal unit

Gd : Gadolinium

HNP: Herniated nucleus pulposus

IDP : Intradiscal pressure

IJO : Idiopathic juvenile osteoporosis

LBP : Low back pain

MEP : Motor-evoked potentials

MRI : Magnetic resonance imaging

NP : Nucleus pulposus

PGE₂ : Prostaglandin E₂

PKFP : Prone knee flexion provocative test

PLL: Posterior longitudinal ligament

ROM : Range of motion

SEP : Somatosensory- evoked potentials

SLR : Straight leg rising

SLRT : Straight leg raising test

STIR : Short time inversion recovery

 $T_1 WI$: T_1 weighted image

 T_2 WI : T_2 weighted image

VB : Vertebral bodies

LIST OF TABLES

		Page
Table (1):	In vivo measurement of IDP	26
Table (2):	Cases from 1-5	97
Table (3):	Cases from 6-10	98
Table (4):	Cases from 11-15	99

LIST OF FIGURES

		Page
Figure (1):	Formation of the vertebral column at various stages of development	7
Figure (2):	Typical lumbar vertebra	9
Figure (3):	Ligaments of the lumbar vertebrae	10
Figure (4a,b):	Ligaments of the lumbosacral region	13
Figure (5):	Intervertebral disc	15
Figure (6):	Transverse section of the intevertebral disc	16
Figure (7):	Bounderies of the intervertebral foramen	17
Figure (8):	In vivo measurement of IDP	26
Figure (9):	Illustration of the complex structure of the nucleus pulposus and the annulus	28
Figure (10):	Artist's illustration showing the vascular supply to the disc space from the cartilaginous endplate	34
Figure (11):	Artist's illustration showing innervations of the PLL and the disc annulus	35
Figure (12):	Stages of disc herniation	39
Figure (13):	Schematic drawing displaying avulsion of bone fragment from end plate through the fibrous annulus	64
Figure (14):	Algorithm for evaluation and treatment of back pain in adolescents	85
Figure (15):	Radiographs showing the extent and morphology of the prolapsed L5/S1 disc	101
Figure (16):	Radiographs showing apophyseal ring fracture of the lower border of L4 vertebra	103
Figure (17):	Ragiographs showing apophyseal ring fracture of the upper border of L5 vertebra	105

	Page
Radiographs showing narrowed disc space at the level of L2/3 disc space and bony speciale of the L2 vertebra	107
CT lumbosacral spine showing a large fragment on	109
	level of L2/3 disc space and bony speciule of the L2 vertebra

LIST OF CONTENTS

		Page
1-	Introduction	1
	• Introduction	1
	• Aim of the work	4
2-	Embryology	5
3-	Anatomy	8
	Typical Lumbar Vertebra	8
	Ligaments At The Lumbar Region	10
	The Intervertebral Disc	15
4-	Biomechanics	20
	Disc Biomechanics Under Various Compressive Loads	22
	Intradiscal Pressure	25
5-	Pathology	27
	Pathophysiology of the lumbar disc	27
	Biochemical background	28
	Vascularity Of The Disc	32
	• Innervations Of The Disc	34
	Mechanical Stress And Inflammatory Components	36
	• Disc Herniation	38
6-	Epidemiology	40
7-	Clinical Presentation	42
	• Symptoms	43
	• Signs	45
	Diagnostic Tests	47
8-	Investigations	53
	Plain Radiography	53
	Mylography	54
	Computed Tomography	54

	Page
Magnetic Resonance Imaging	55
Normal Appearance Of The Disc	55
Appearance Of Degenerated Disc And Associated Pathology	57
Neurophysiologic Tests	59
• Discography	61
9- Differential Diagnosis	62
Mechanical Disorders	63
Developmental Disorders	65
Infectious And Inflammatory Conditions	71
Benign Neoplastic Disorders	74
Malignant Neoplastic Disorders	76
Psychosomatic Pain	79
10- Treatment	80
Conservative Care	80
Operative Intervention	82
Complications Of Lumbar Discectomy	86
11- Materials and Methods	90
Neurological Sheet	90
Case Illustration	100
12- Discussion	110
13- Summary and Conclusion	114
14- References	115
15- Arabic summary	-

INTRODUCTION

The intervertebral discs are complex structures that consist of a thick outer ring of fibrous cartilage termed the annulus fibrosus, which surrounds a more gelatinous core known as the nucleus pulposus; the nucleus pulposus is sandwiched inferiorly and superiorly by cartilage end plates. The intervertebral discs lie between the vertebral bodies, linking them together. They are the main joints of the spinal column and occupy one-third of its height. Their major role is mechanical, as they constantly transmit loads arising from body weight and muscle activity through the spinal column .they are approximately 7-10 mm thick and 4 cm in diameter in the lumbar region. (**Roberts S, 1989**)

Disc degenerates far earlier than other musculoskeletal tissue. (**Boos** N, 2002)

Lumbar disc herniation is rare in children and adolescents. Although the true incidence rate is not known, the incidence of surgery for disc herniation in patients less than 20 years of age is less than 3%. (Borgensen SE et al., 1974)

Males appear to be affected more often than females, by a ratio of 2:1. (Clarke NMP, 1983)

Trauma is the precipitating cause in more than 50% of cases in children and adolescents, acute trauma may occur in injuries such as falling from a height or motor vehicles accidents, however, chronic repetitive trauma seen in athletics injuries, and lifting injuries have also been observed (**Hession EF,1993**).

The clinical features of lumbar disc herniation are not always the same for young and adults. This may contribute to delay in diagnosis of this aliment in children and adolescents .Ghabrial and Tarrant reported that 41 of their 87 adolescents with disc herniation had no leg pain and signs of true neurological deficits were often absent. (Ghabrial YAE, 1989)

However, abnormal posture and scoliosis, severely restricted lumbar range of motion, positive straight leg raising sign, pain with valsalva's maneuver and abnormal shuffling gait are also been reported by many authors.(Kurihara A,1980)

There are a number of differential diagnoses to be considered in an adolescent with a lumbar disc. The most important ones to rule out are apophyseal ring fracture (accounts for between 19-32% of disc herniations in 13 to 14 years old), disc infections and tumors causing radiculopathy .Radiographs, blood work and MRI help in reaching the diagnosis by ruling out other causes. (**Luukkonen M, 1997**)

Authors argue that conservative treatment is ineffective in children; it has been effective in as few as 25% of cases. If symptoms persist at a level that impairs return to normal routine and physical activity, then conservative therapy may be considered a failure .At this point, operative treatment may become necessary. The goal of surgical treatment is to remove pressure from the nerve root and thecal sac. When the patient has a focal herniation with discrete pressure on the nerve root, annulotomy and removal of the extruded nucleus pulposus fragment is likely to be successfully by it self. Large, board-base bulges, often seen in subligamentous herniation, may require more extensive discectomy. In these cases, enough material must be removed that the thecal sac is

decompressed across the entire breadth of the extrusion. Surgical excision is typically carried out through a microdiscectomy approach. (**Deluca PF**, 1994)

Surgical treatment of pediatrics and adolescent patients with disc herniation is generally satisfactory. Eighty – five percent of patients in these age groups experience a good to excellent results after microdiscectomy and nerve root decompression. Radicular pain and back pain typically resolve soon after the operative procedure, and patients return to function rapidly. Long-term results tend to be good ,but these patients experience degeneration and further problems because of their predisposition to disc degeneration and because of the normal progression of disc disease seen in the broader population. (**Fisher RG,1981**)

In Ebersold's study of patients, 21% underwent a second spine operation during a 34- year follow up. (Ebersold MJ, 1987)

Other authors have noted a 10% reoperation rate over a 3-year period of follow up. (**Fisher RG, 1981**)

AIM OF THE WORK

- 1. Outline the morphology and biochemistry of normal discs and changes that arise during degeneration.
- 2. Outline clinical pictures, investigations and differential diagnosis of lumbar disc prolapse in children and adolescents.
- 3. Outline different modalities of treatment, twenty cases are illustrated.
- 4. Outline the different disc levels to be affected in such young population (less than 25 years old), and which level has the highest prevalence.
- 5. Out line the response to different treatment modalities.

EMBRYOLOGY

During the 4th week of development, cells of the sclerotomes shift their position to surround both the spinal cord and the notochord (Fig.1). This positional change is affected by differential growth of the surrounding structures and not by active migration of sclerotome cells. This mesenchymal column retains traces of its segmental origin as the sclerotomic blocks are separated by less dense areas containing intersegmental arteries (Fig.1A).

During further development, the caudal portion of each sclerotome segment proliferates extensively and condenses (Fig.1B). This proliferation is so extensive that it proceeds into the adjacent intersegmental tissues and binds the caudal half of one sclerotome to the cephalic half of the adjacent sclerotomes (See arrows in Fig.1A and B). Hence, by incorporation of the intersegmental tissue into the precartilaginous vertebral body; (Fig. 1B) the body of the vertebra becomes intersegmental in origin.

Mesenchymal cells located between cephalic and caudal parts of the original sclerotome segment do not proliferate but fill the space between two precartilaginous vertebral bodies. In this way, they contribute to formation of the intervertebral disc (Fig.1B). Although the notochord regresses entirely in the region of the vertebral bodies; it persists and enlarges in the region of the intervertebral disc. Here it contributes to the nucleus pulposus, which is later surrounded by circular fibers of the annulus fibrosus. Combined, these two structures form the intervertebral discs (Fig.1C).