

Ain Shams University Faculty of Education Physics Department

Correlation of positron annihilation parameters with the mechanical properties of some Al alloys

Thesis

Submitted in Partial Fulfillment of Requirements for Master Degree of Teacher's Preparation in Science (Physics)

\mathcal{B}_y

Shaimaa Mohammed Abd El-Baki Kandil

B.sc and Education, Gen. Diploma (Physics) and Spec. Diploma (physics)

Under supervision of

Prof. Dr. Sohair Mohammed Diab

Professor of Nuclear Physics Faculty of Education - Ain Shams University

Prof. Dr. Essam El-Sayed Abd El-Hady

Professor of Nuclear Physics Faculty of Science - El Minia University

Ass. Prof.Dr. Alaa Farag Abd El-Rehim

Assistant Professor of solid state Physics, Faculty of Education- Ain Shams University

> Faculty of Éducation Ain Shams University 2017

Approval Sheet

Title	: Correlation of positron annihilation	parameters with
	the mechanical properties of some Al a	alloys
Candidate	: Shaimaa Mohammed Abd El-Baki Kar	ndil
Degree	: Master of Teacher's Preparation in Sci	ence (Physics)
J		
	Board of Advisors	
	Approved by	Signature
1. Prof.	Dr. Sohair Mohammed Diab	
Pro	ofessor of Nuclear Physics,	
Faculty of	f Education, Ain Shams University	
2- Prof. D	r. Essam El-Sayed Abd El-Hady	
Pro	ofessor of Nuclear Physics,	
Faculty	of Science- El Minia University	
3. Ass. Pro	of. Dr. Alaa Farag Abd El- Rehim	
Assistan	t Professor of solid state Physics,	
Faculty of	Education, Ain Shams University	
Date of presen	ntation / /2017	
Post graduat	e studies:	
Stamp:	/ / approval:	1 1
Approval of F	Faculty Council: / /2017	
Approval of V	University Council: / /2017	

Acknowledgement

First and foremost, all praises and thanks are for ALLAH, the most gracious, the most merciful for blessing this work until it has reached its end and has given me health and strength to accomplish this thesis.

All my thanks are not enough to express my feelings of sincere gratitude to my main supervisor **Prof.Dr Sohair Mohammed Diab**, Professor of Nuclear Physics Ain Shams University, for her continuous encouragement, generous support and unlimited help.

I am greatly honored to express my sincere appreciation to **Prof.Dr. Essam El-Sayed Abd El-Hady**, Professor of Nuclear Physics, El-Minia University for his help, support; advice and kindly supplied me with all necessary facilities need for the measurements performed in this work.

I am deeply indebted to Ass.Prof.Dr.Alaa Farag Abd El-Rehim, Assistant Professor of Solid State Physics Ain Shams University, for all his help, encouragement, dedication in helping me, support, patience, and sincere advices advance my knowledge and making this work possible.

Many thanks to **Prof.Dr. Mahmoud Yassine**, Head of Physics Department, faculty of education Ain Shams University

My sincere thanks to **Dr. Marwa Abd El-Hafez**, Lecturer of Solid State Physics, Ain Shams University for her valuable help. I owe a lot to all members of nuclear physics lab, faculty of science, El-Minia University, whom without them this work would have never been finished.

My great thanks to all those who, in different ways, have walked beside me along the way; offering support and encouragement but it has not been possible for me to mention them by name wishing them all the best.

Last but not least, I thank my **father and family** for their invaluable care and unlimited support to make this work possible.

Special gratitude goes to the spirit of my dear Mother.

CONTENTS

LIST OF ABBREVIATIONS	VIII
LIST OF FIGURES	IX
LIST OF EQUATIONS	XII
LIST OF TABLES	XIV
ABSTRACT	XV
SUMMARY	XVI
CHAPTER 1: Introduction and Aim of the Wor	k
1.1 Introduction	
1.2 What we can see using PAS techniques?	
1.3 The aim of the present thesis	
CHAPTER 2: Theoretical Background and Literat	ture Review
2.1 Theoretical background	5
2.1.1 Basics principles of positron annihilation	5
2.1.2 Positron annihilation techniques	6
2.2 Positron annihilation in metals and alloys	8
2.3 Trapping model	11
2.3.1 Trapping into vacancies and vacancy cluster	13
2.3.2 Positron trapping in dislocations	14
2.3.3 Positron trapping in grain boundaries	16
2.4 Hardness	17
2.5 Diffraction of wave by crystals	17
2.6 Aluminum alloys	19
2.7 Designation of aluminum alloys	19
2.8 Aluminum silicon alloys	20
2.9 Phase diagram	20

2.10 Types of defects in materials	1
2.10.1 Point defects – vacancies and interstitials	2
2.10.2 Linear defects - dislocation	7
2.11 Previous work in the field of the present study	9
CHAPTER 3: Experimental Techniques and Measuring	
Devices	
3.1 Materials used	5
3.2 Preparation of the samples	5
3.3 Positron source	7
3.4 The procedure of making a ²² Na positron source	8
3.5. Radiation Safety	0
3.6 Positron Annihilation Lifetime Technique (PAL)4	1
3.6.1 High voltage power supply4	1
3.6.2 Plastic scintillation detectors	1
3.6.3 Constant fraction discriminator (CFD)	2
3.6.4 Time-to-amplitude converter (TAC)	2
3.6.5 Multi-channel analyzer (MCA)	3
3.7 Conventional data analysis of a positron annihilation spectrum 43.	3
3.7.1 Time calibration	3
3.7.2 The time resolution	5
3.8 The vicker's microhardness device	5
3.9 The vicker's microhardness measurements	7
3.10 X-ray device	8
3.10.1 X-rays diffraction measurements	9
3.11 Scanning electron microscope (SEM)	9

CHAPTER 4: Experimental Results and Discussion	
4.1 Positron annihilation lifetime (PAL) measurements	. 52
4.2 Vicker's microhardness measurements test	. 53
4.3 X-ray diffraction measurements	. 60
4.4 Correlation between the positron annihilation lifetime and Vicker	rs
microhardness	. 61
4.5 Positron annihilation parameters derived from chemical composition	. 71
CONCLUSIONS	75
REFERENCES	. 77
Published paper extracted from the present thesis	. 81
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

ABBREVIATION EXPRESSION

CFD Constant Fraction Discriminator
 DBS Doppler Broadening Spectroscopy
 DBAR Doppler Broadening of Annihilation

Radiation

EDS Energy Dispersive Spectroscope

EC Electron Capture

FWHM Full Width at Half Maximum

HV Vickers Hardness

HMV-2 Martens Vickers Hardness IQA Interrupted Quenching Ageing

LT Life Time

MBq Mega Becquerel

MCA Multi Channel Analyzer o-ps Ortho positronium

OES Optical Emission Spectrometer

OPM Optical Microscope

PAS Positron Annihilation Spectroscopy
PAL Positron Annihilation Life time
PALS Positron Annihilation Life time

Spectroscopy

PAT Positron Annihilation Technology

Ps Picosecond
ppm Parts per million
RT Room temperature
SQA Step Quenching Ageing

SEM Scanning Electron Microscope

T6 Solution heat treatment

TAC Time – to – Amplitude Converter

T_a Aging temperature

t_a Aging timeUV Ultraviolet

X- ray Electromagnetic radiation

(wavelength 0.01 to 10 nm)

XRD X- Ray Diffraction YS Yield Strengths

LIST OF FIGURES

Fig. No.	Title	Page
Fig. (2-1):	First experimental image of a positron	7
Fig. (2-2):	Scheme of positron annihilation in metals	7
Fig. (2-3):	Positron annihilation techniques	10
Fig. (2-4):	The positron experiment. Positrons from a	
Fig. (2-5):	radioactive isotope, like ²² Na, annihilate in the sample material	10
	the 2 γ -annihilation process. The momentum of the annihilating pair is denoted by P. Subscripts L and T refer to longitudinal and transverse	
	components, respectively	11
Fig. (2-6):	Annihilation mechanism of positrons in free and	
5. (2.5)	defect States	13
Fig. (2-7):	Trapping of positrons in vacancy defect	15
Fig. (2-8):	Positron lifetime of (Al) and (Fe) as a function of	1.5
E' (2.0)	numbers of vacancies	15
Fig. (2-9):	Trapping of positrons in a dislocation	16
Fig. (2-10):	X-Rays are scattered from a crystal lattice	18
Fig. (2-11):	The Aluminum rich portion of the Al-Si phase diagram	21
Fig. (2-12):	Point defect vacancy	22
Fig. (2-12):	Point defect – Self-interstitial	22
Fig. (2-14):	Schematic representation of different point defects	22
	in a crystal. (1) vacancy; (2) self-interstitial; (3) interstitial impurity; (4) and (5) substitutional impurities. The arrows show the local stresses	25
Fig. (2-15):	introduced by the point defects	23
	one represents anion	25
Fig. (2-16):	The position of impurities (added material) in the	
	matrix (host material)	26
Fig. (2-17):	New phase in alloy, which differ from the bulk by	
Fig. (2-18):	An edge dislocation, the insertion of atoms in the	26
	upper part of the lattice	28

Fig. No.	Title	Page
Fig. (2-19):	A screw dislocation; the screw-like 'slip' of atoms	
(0)	in the upper part of the lattice	28
Fig. (2-20):	Dislocation in nickel (the dark lines and loops).	
	TEM image from Manchester Materials Science	20
Fig. (3-1):	Centre The data sheet of the sample	29 36
Fig. (3-1) :	The decay of ²² Na it has a 90.4% probability of	30
119. (6 2)	emitting a positron and electron neutrino in	
	decaying to the excited state of ²² Ne. The ²² Ne	
	ground state is reached through emission of a 1.2	
	MeV γ-ray after 3.7 ps. Other decay channels are	
	electron capture (EC) and direct transition to the	
	ground state	40
Fig. (3-3):	Sandwich sample setup	41
Fig. $(3-4)$:	Schematic diagram of a positron annihilation	16
Fig. (3-5):	lifetime (PAL) spectrometer The system time calibration by the two sources	46
rig. (3-3) .		46
Fig. (3-6):	method	47
Fig. (3-7):	Microhardness device	49
Fig. (3-8):	Load application	50
Fig. (3-9):	X-ray device	50
Fig. (3-10):	X-rays diffractometer	51
Fig. (3-11):	Scanning electron microscope (SEM)	51
Fig. (4-1):	Relationship between the aging temperature with	
	lifetime components: (a) τ_1 and τ_2 and (b) I_2 at	
	aging time 15 min at room temperature, for Al- 5wt% Si alloy	54
Fig. (4-2):	Relationship between the aging temperature with	J 4
119 (12)	lifetime components: (a) τ_1 and τ_2 and (b) I_2 at	
	aging time 30 min at room temperature, for Al-	
	5wt% Si alloy	55
Fig. (4-3):	Relationship between the aging temperature with	
	lifetime components: (a) τ_1 and τ_2 and (b) I_2 at	
	aging time 60 min at room temperature, for Al-	
	5wt% Si alloy	56
Fig. (4-4):	Relationship between the aging temperature with	
	lifetime components: (a) τ_1 and τ_2 and (b) I_2 at	
	aging time 120 min at room temperature, for Al-	
	5wt% Si alloy	57

Fig. No.	Title	Page
Fig. (4-5):	Relationship between the aging temperature with	
	Hv (a) aging time 15 min and (b) aging time 30	
	min, for Al-5wt% Si alloy	58
Fig. (4-6):	Relationship between the aging temperature with	
	Hv (a) aging time 60 min and (b) aging time 120	
	min, for Al-5wt% Si alloy	59
Fig. (4-7):	XRD pattern of Al-5wt% Si alloy aged for 15 min	
F1 (4.0)	at different aging temperature	63
Fig. (4-8):	The aging temperature T_a dependence of (a) lattice	
	strainη, (b) average crystallite size d and (c)	
	dislocation density δ , at different aging	
71 (10)	temperatures	64
Fig. (4-9):	τ_{av} and H_v as a function of aging temperature, T_a ,	
E' (4.10)	for Al-5wt%Si alloy aged at 15 min	65
Fig. (4-10):	τ_{av} and H_v as a function of aging temperature, T_a ,	
E:~ (4 11).	for Al-5wt% Si alloy aged at 30 min	66
Fig. (4-11):	τ_{av} and H_v as a function of aging temperature, T_a ,	67
Fig. (4-12):	for Al-5wt% Si alloy aged at 60 min	67
Fig. (4-12).	for Al-5wt%Si alloy aged at 120 min	68
Fig. (4-13):	SEM micrographs of Al-5wt%Si alloy aged for 15	00
11g. (4 15).	min at a) 250°C and b) 350° C showing Si	
	precipitates. More number of dispersed Si	
	precipitates is observed at higher aging temperature	
	(350 °C) compared to lower aging temperature (250	
	⁰ C)	69
Fig. (4-14):	SEM micrographs of Al-5wt%Si alloy aged for 30	
5 . /	min at a) 250° C and b) 350° C showing the	
	coarsening of Si precipitates at higher aging	
	temperature (350°C)	70

LIST OF EQUATIONS

Eq. No.	Equation	Page
(2-1)	$e^+ + e^- \rightarrow 2\gamma$	6
(2-2)	$C_v = A \ exp \ (-E_F/kT)$	9
(2-3)	$\frac{dP_{b}(t)}{dt} = -\lambda_{b}P_{b} - KP_{b}$	11
(2-4)	$\frac{dP_{d}\left(t\right)}{dt} = -\lambda_{d}P_{d} + KP_{b}$	11
(2-5)	$ au_{_1} = \left(\lambda_{_b} + \kappa ight)^{-1}$	12
(2-6)	$ au_2 = \lambda d^{-1}$	12
(2-7)	$I_1 = 1 - I_2$	12
(2-8)	$I_2 = \frac{\kappa}{(\lambda_b - \lambda_d + \kappa)}$	12
(2-9)	$\kappa = \frac{I_2}{I_1} (\lambda_b - \lambda_d)$	12
(2-10)	$\tau_m = I_1 \tau_1 + I_2 \tau_2$	12
(2-11)	$\kappa = \mu C$	12
(2-12)	$I_{1}\lambda_{1} + I_{2}\lambda_{2} = \lambda_{b} - (\lambda_{b} - \lambda_{d})\alpha$	16
(2-13)	$D=\lambda^{}_{\!\scriptscriptstyle b}-\!\left(\lambda^{}_{\!\scriptscriptstyle b}-\lambda^{}_{\!\scriptscriptstyle d} ight)\!lpha$	17
(2-14)	2d sin $\theta = n\lambda$	18
(2-15)	$d^{2} = a_{0}^{2} / \left(h^{2} + K^{2} + l^{2}\right)$	18
(2-16)	$\sin^2 \theta = n^2 \lambda^2 \left(h^2 + K^2 + l^2 \right) / 4a_0^2 = C \left(h^2 + K^2 + l^2 \right)$	18

Eq. No.	Equation	Page
(2-17)	$N_{v} = N_{s}x \exp\left\{\frac{-E_{v}}{k_{B}T}\right\}$	23
(3-1)	$^{22}Na \rightarrow ^{22}Ne + \beta^+ + \upsilon_e + \gamma$	40
(3-2)	$Y(t) = \sum_{i=1}^{n} \frac{I_{i}}{\tau_{i}} \exp\left\{\frac{-t}{\tau_{i}}\right\}$	43
(3-3)	$y(t) = R(t) * \left(N_t \sum_{i=1}^n \alpha_i \lambda_i e^{-\lambda t} + B \right)$	44
(3-4)	$\tau_{av} = \frac{\tau_1 I_1 + \tau_2 I_2}{I_1 + I_2}$	45
(3-5)	$HV = \frac{P}{A}$	47
(3-6)	$A = \frac{D^2}{2Sin\left(\frac{136}{2}\right)}$	48
(3-7)	$HV = 1.854 \frac{P}{D^2}$	48
(4-1)	$\beta \cos \theta = k \lambda / d + 2\eta \sin \theta$	60
(4-2)	$\delta = 1/\eta^2$	60
(4-3)	$r_c = 0.31/\Delta A_+^{1/2}$	71
(4-4)	$N = 6\left(\pi d^3\right)^{-1}$	74

LIST OF TABLES

Table No.	Title	Page
Table (2-1):	Designation of aluminum alloys and their	
	applications	19
Table (3-1):	The positron sources	37
Table (4-1):	Difference $\Delta A_{\scriptscriptstyle +}$ between the positron affinity of	
	the host (aluminum) and the precipitate of each	
	element, and the critical radii r_c of the	
	precipitates for which positron trapping is	
	expected	71
Table (4-2):	The Wigner-Sietz radii of atoms (in a.) used in	, 1
	the calculations	72
Table (4-3):	The minimum number of atoms in a precipitate	, _
	of critical size (nc) which are able to trap	
	positrons in aluminum matrix	72
Table (4-4):	Number of impurity atoms in Al-5wt%Si	, 2
	alloy(n)	73
Table (4-5):	The total numbers of impurity atoms in unit	73
	volume for the elements which are able to trap	
	positrons, n_{ν} are the total numbers of impurity	
	atoms of these elements for Al-5wt%Si alloy	73
Table (4-6):	Mean distance of precipitates of impurity	73
	elements that are able to trap positrons are the	
	mean distance of the precipitates in Al-5wt%Si	
	alloy.	74