

Faculty of Medicine Ain Shams University Department of Cardiothoracic Surgery

Role of Thoracic Surgery in Patients with Thymus Gland Pathology

Essay

Submitted for Fulfillment of Master Degree in Cardiothoracic Surgery

Presented by Mahmoud Gamal Gaber

M.B.B.C.H
Faculty of Medicine, Tanta University

Under Supervision of **Prof.Dr. Hatem Yazeed Sayed Ahmed**

Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Dr. Hany Hasan Mohamed Elsayed

Assistant Professor of cardiothoracic surgery Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed Mohamed Mostafa

Lecturer of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

First and foremost, praise and thanks must be to ALLAH, Who guides me throughout life.

I would like to express my deepest gratitude and thanks to Prof. Dr. Hatem Yazeed Sayed Ahmed, Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University, for his kind continuous encouragement and great support throughout the work. It was a great honor to be a student working under his supervision.

I am also greatly indebted and grateful to Dr. Hany **Elsayed**, Assistant **Mohamed** Professor cardiothoracic surgery Faculty of Medicine - Ain Shams University, for his great help, valuable time, careful supervision and continuous advices and his efforts that made this work come to light.

I am also greatly indebted to Dr. Ahmed Mohamed **Mohamed Mostafa,** Lecturer of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University, it was impossible for me to finish this work without his wise instructions and guidance. No words would ever fulfill my deepest gratitude towards his support.

Last but not least, I can't forget to than all members of my family, specially my parents for pushing me forward in every step in my life.

Candidate

List of Contents

Subject	Page :	No.
List of Abbro	eviations	i
List of Table	S	iii
List of Figur	es	iv
Introduction	••••••	1
Aim of the W	Vork	4
Chapter (1):	Embryology and Anatomy of the Thymus Gland	5
Chapter (2):	Physiology and Immunology of the Thymus Gland	25
Chapter (3):	Pathology of the thymus gland	. 36
Chapter (4):	Radiologic Diagnosis: X-ray, CT and MRI	. 46
Chapter (5):	Thymus and myasthenia gravis	. 56
Chapter (6):	Benign and Malignant Tumors of Thymus gland	72
Chapter (7):	Different Surgical Approaches for Thymus Gland Surgery	. 84
Summary	••••••	118
References	••••••	122
Arabic Sumr	nary	—

List of Abbreviations

Abbr. Full-term

ACh : Acetyl choline

AchR : Acetyl choline receptor
ADH : Anti diuretic hormone

AIRE : Autoimmune regulator

APECED : Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy

CO2 : Carbon dioxide

CSR : complete stable remission

CT : Computerized tomography

cTECs : Cortical thymic epithelial cells

DC : Dendritic cells

DGA : DiGeorge Anomaly

DP : Double-positive

FH : Follicular hyperplasia

G-CSF : Granulocyte colony stimulating factor

GH : Growth hormone

IgG : Immunoglobulin G

IL : Interleukin

ITMIG: International Thymic Malignancy Interest Group

IVI : Intravenous immunoglobulin

LOMG : Late-onset MG

M-CSF : Macrophage CSF

MEN-type I : multiple endocrine neoplasia syndrome type I

MG : Myasthenia Gravis

MGFA : Myasthenia Gravis Foundation of America

MHC : Major Histocompatibility Complex

MRI : Magnetic resonance imaging

MSAB : Medical Scientific Advisory Board

MTC : MultilocularThymic Cyst

mTEC : Medullary thymic epithelial cells

MTH : Massive thymic hyperplasia

NKT : Natural killer T

RCTs: randomized controlled trials

RCTs : Randomized controlled trials

RE : Reticulo-epithelial

RNS : Repetitive nerve stimulation

RRs : Relative rates

S1P1 : Sphingosine 1-phosphate type 1 receptor

SFEMG : Single- fiber electromyography

SNMG : Seronegative MG

SP : Single positive

TCR : T-cell receptors

TCT : Transcervical approaches

TF5 : Thymosinfraction 5

TF-5 : Thymosinfraction 5

THF : Thymichumoral factor

TNC: Thymic nurse cells

TP-F: pentapeptide thymopentin

Treg-cells: regulatory T-cells

TTH : True thymic hyperplasia

VATS : Video assisted thoracoscopic surgery

WHO : World Health Organization

List of Tables

Table N	0.	Title	•	Page No	ο.
Table (1):	and the	major	s of myasther considerations	in the	63
Table (2):	MGFA cli	nical class	ification		64

List of Figures

Figure No	o. Title	Page	No.
Figure (1):	Light micrograph of neonatal human showing its lobular architecture		
Figure (2):	Schematic drawing showing the locativarious types of epitheliocyte in the parenchyma	e thymic	;
Figure (3):	Light micrograph of neonatal human thy	mus	13
Figure (4):	Light micrograph of adult human thyme	us	20
Figure (5):	Jaretski's classic depiction of the "body" of the thymus		
Figure (6):	a, b a Anterior and b lateral (right) viocourse of the phrenic nerves as they from the neck into the mediastinum. The are represented by the bold black lines.	descend he nerves	<u> </u>
Figure (7):	Postchemotherapy true thymic hyperparts 42- year-old man who died from rucerebral artery aneurysm	upture of	?
Figure (8):	The thymic lobular architecture, with d between cortical and medullary a maintained in true thymic hyperplasia.	areas, is	,
Figure (9):	Massive thymic hyperplasia in a 4 child, who underwent thymectomy be mild dyspnoea	ecause of	
Figure (10):	Follicular hyperplasia of the thymus yearold woman with myasthenia gravis		
Figure (11):	Collection of B-lymphocytes in the mormal thymus		
Figure (12):	Macrosection of the thymus with hyperplasia.		

Figure (13):	Follicular hyperplasia of the thymus	45
Figure (14):	<i>a-c</i> Thymic hyperplasia	49
Figure (15):	a-c Thymic hyperplasia. At MRI, in the anterosuperior part of the mediastnum, the thymus is found to be enlarged	49
Figure (16):	a, b Thymic cyst. At CT, in the anterior mediastinum, regular-margin formation, homogeneously hypodense	50
Figure (17):	a-d Congenitalthymic cyst from a remnant of the thymopharyngeal duct. At MRI, lobulated formation, isointense in the weighted T1 sequence.	51
Figure (18):	a, b PA and LL in patient with thymoma. The mass in the anterior mediastinum is shown in the LL radiogram.	52
Figure (19):	a-c Thymoma. At MRI	53
Figure (20):	a, b Thymoma with pleuric (a) and retro-peritoneal(b) diffusion	54
Figure (21):	a, b Thymoma with a mainly cystic aspect, incidentally found after a trauma	55
Figure (22):	Multilocularthymic cyst with dilated Hassall's corpuscles and lymphoid hyperplasia	73
Figure (23):	Thymolipoma showing remnants of thymic and adipose tissue	75
Figure (24):	Paraganglioma with a classic nesting pattern and dilated vascular structures	77
Figure (25):	InvasiveThymoma	80
Figure (26):	Moderately differentiated neuroendocrine carcinoma (Atypical carcinoid)	82
Figure (27):	The retraction-suspension device.the self-retaining sternal retractor, provided with a V-shaped opening	89

Figure (28):	 a-c aThe sternal retractor is put into the upper partial sternal split, b gradually opened, and c connected to the lifting device
Figure (29):	 a-d a Skin sparing incision for a vertical median sternotomy. b. Operative view. c. Sternotomy closure by means of absorbable sutures. d. The surgical specimen.
Figure (30):	Arrangement of trocars for left sided thoracoscopicthymectomy
Figure (31):	Positioning for a right-sided video assisted thoracoscopic thymectomy
Figure (32): I	Positioning of the ipsilateral arm in a hanger 99
Figure (33):	Theatre setup for a right-sided video assisted thoracoscopic thymectomy
Figure (34):	On the right side, the right lower horn is dissected along the right phrenic nerve, the pericardium and sternum
Figure (35):	Dissection along the superior vena cava until its fusion with the innominate vein makes localization of the innominate vein on the right side easier than on the left side
Figure (36):	The left upper horn is dissected in the same way as the right upper horn and the thymic vein is divided with LigaSure
Figure (37):	The pleura on the left side is localized, and by continuing the dissection posteriorly the left phrenic nerve can be localized)
Figure (38): 7	Thymus marked for the pathologist106
Figure (39):	the difference between right (solid line) and left (dash line) video-assisted thoracoscopy group 110

Introduction

The thymus is a gland that over the last two centuries has generated great awareness not only from the anatomical perspective but also for the physiological and pathological roles it plays in many disease processes. Prior to the early studies on its anatomy and physiology in the 18th century, the thymus was believed to perform unusual and curious functions such as purification of the nervous system, providing a protective cushion for the vasculature of the superior mediastinum, fetal nourishment, or more spiritual roles such as being the seat of the soul, among others (*Miller*, 2002).

During the 19th century important anatomical/physiological studies took place focusing on the role of the thymus in pathological conditions. However, it was not until the middle of the 19th century that a more comprehensive analysis of the role of the thymic gland and its role in pathogenesis began to emerge (*Doyle*, 2006).

Currently, while the knowledge gained on the diverse aspects of the thymic gland has furthered understanding of its role in a gamut of processes, more knowledge is still being sought, and by no means is a full understanding of the gland's physiology and pathology complete. Different aspects, including its purported endocrine function, its

association with other autoimmune diseases like multiple sclerosis, rheumatoid arthritis, and lupus erythematosus, among others, are under evaluation and research (*Takahama*, 2006).

In addition, surgical modalities in the treatment of pathological conditions affecting the thymus gland are also under evaluation and scrutiny in order to provide the best methodology. Therefore, daily practice regarding diseases involving the thymic gland has become a multidisciplinary approach in which experts, including radiologists, neurologists, immunologists, pathologists, oncologists, and surgeons, participate in the evaluation of patients (*Fang et al.*, 2007).

New pathological and oncological classifications are carefully presented and discussed; the role of thymopathies with special interest on myasthenia gravis is clearly addressed; and the role of the different diagnostic imaging modalities, including PET and the different surgical techniques, is carefully reviewed (*Hanisch et al.*, 2006).

Special emphasis is given to the surgery of the thymus: the different approaches including open conventional, open video-assisted, totally endoscopic, and robotic techniques, and the types of interventions including the complex techniques in superior vena cava syndrome, and the reinterventions (*Shrager et al.*, 2006).

As would be expected, an accurate analysis of the anesthesiological and intensive care problems is also presented. From the oncological point of view, the role of radiation, chemotherapy, and complementary treatments (steroids, octreotide) is highlighted (*Bagshaw O, 2007*).

In the section of myasthenia gravis, the effectiveness of modern therapeutic protocols, the use of multimodal therapy, and the follow-up of patients are carefully discussed (*Romi et al.*, 2005).

Aim of the Work

The aim of work is to review the role of thoracic surgery in patients with thymic gland pathology and how to assess different thymic gland diseases with special interest on myasthenia gravis and thymic gland tumors with explaining different surgical approaches for thymic resection.