CLINICAL APPLICATION AND ADVANCES IN RADIOFREOUENCY ABLATION OF LUNG NEOPLASMS

Essay

Submitted for Fulfillment of Master Degree in Radiodiagnosis

By **Farida Mohamed Metwali** M.B. B. Ch

Supervised By
Dr. Naglaa Mohamed Abdel-Razek

Assistant Professor of Radiology, Faculty of Medicine - Cairo University

Dr. Ahmed El Halafawy

Assistant Professor of Chest Diseases Faculty of Medicine - Cairo University

Dr. Eman Mohamed Hamdy

Lecturer of Radiology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2012

Abstract

Chest wall involvement by either primary lung cancer or metastatic deposits is common. Large chest wall tumors are difficult to treat with radiation therapy alone, and many patients with intractable pain have already received the maximal dose of radiation.

 Key word: RFA- *Technical*- Epidemiologysonographic- MHZ

First of all, I thank Allah who gave me the power to finish this work.

I would like to express my deepest gratitude and cardinal appreciation:

To Prof. Dr. Naglaa Mohammed Abdelrazek, Assistant professor of radio diagnosis, Faculty of Medicine, Cairo University, for her kind Guidance and supervision.

To Dr. Ahmed Elhalafawy Assistant Professor of Chest Disease, Faculty of Medicine, Cairo University.

Thanks to Dr. Eman Mohammed Hamdy lecturer of radio-diagnosis, Faculty of Medicine, Cairo University, for her supervision and participation in this work.

Finally I am thankful to my family who support me throughout the work.

Farida Mohammed

List of Contents

Title	Page No.
List of Figures	I
List of Tables	
List of Abbreviations	VI
Introduction	1
Aim of the Work	3
Review of Literature	
US & CT Radiological Anatomy and TechniquesError! Bookm	ark not defined.4
 Normal sonographic anatomy 	
 Computed tomography anatomy 	
Pathology and Radiological Findings	25
 Primary lung cancer 	
 Incidence &prevalence 	
 Epidemiology 	
 Pathology 	
 Staging 	
Physical and Technical Principles	40
 Technical principle 	
 Available devices 	
 Patient selection 	
- Non small cell lung cancer	
- Pulmonary metastasis	
 Technique in details 	
- Pre procedure preparation	
- Anesthesiology care	
- Imaging Guidance and monitoring	
- Post-procedure management	
- Complications	
 Assessment of treatment response 	
 Outcome in other studies 	
Illustrative Cases	87
Summary and Conclusion	98
References	100
Arabic Summary	

List of Figures

Table No.	Title Page No.	
Fig. (1):	Examination of the seated patient	5
Fig. (2):	Examination of the seated patient	6
Fig. (3):	Trans hepatic examination	6
Fig. (4):	Examination from the lateral aspect	7
Fig. (5):	Chest wall with normal smooth visceral pleura	8
Fig. (6):	Clearly recognizable double contour in the area of the parietal	
	pleura	9
Fig. (7):	Numerous comet-trail artifacts on the diaphragmatic pleura	9
Fig. (8):	Transverse sonogram shows a biopsy needle	14
Fig. (9):	CT mediastinal window	16
Fig. (10):	A) Segmental bronchi, B) Schematic drawings of segmental lung anatomy at representative level	21
Fig. (11):	Vascular anatomy of pulmonary hila	
Fig. (11):	Bronchogenic carcinoma.	
Fig. (12):	Solitary bronchoalveolar cell carcinomas	
Fig. (13):	Computed tomography shows a mass (m) in the left upper lobe	
Fig. (14):	Mixed well differentiated adenocarcinoma/ bronchoalveolar cell	4)
11g. (13).	carcinomas	30
Fig. (16):	Calcified bronchial carcinoids.	
Fig. (17):	Separate tumor nodules	
Fig. (17):	Chart illustrates the descriptors from the 7th edition of the	32
11g. (10).	TNMstaging system for lung cancer	3/1
Fig. (19):	Stage T1 tumors. (a) Chest CT scan shows a left lower lobe	, J .
11g. (17).	nodule (arrow) measuring less than 2 cm in size, a finding that is	
	consistent with a stage T1a tumor (≤ 2 cm). (b) Chest CT scan	
	obtained in a different patient shows a right upper lobe nodule	
	(arrow) measuring 2.9 cm in size, a finding that is consistent	
	with a stage T1b tumor (>2 cm but \leq 3 cm).	34
Fig. (20):	Stage T2 tumors. (a) Chest CT scan shows a centrally located	5 1
1 19. (20).	lung nodule (arrow) causing airway obstruction, with atelectasis	
	or postobstructive pneumonia that does not, however, involve	
	the entire lung. (b) Chest CT scan obtained in a different patient	
	shows a mass in the right lung (arrow) measuring 4.8 cm, a	
	finding that is consistent with a stage T2a tumor (>3 cm but ≤5	
	cm). (c) Coronal chest CT scan obtained in a third patient shows	
	a nodule in the bronchus intermedius (arrow). The nodule is 4	
	cm from the carina (an endobronchial lesion > 2 cm from the	
	carina is considered stage T2). At histopathologic analysis, the	
	nodule proved to be a squamous cell carcinoma	35
Fig. (21):	Stage T3 tumors. (a) Chest CT scan shows an irregular mass in	33
11g. (21):		
	the left upper lobe with suspicious local extension to the	
	mediastinal pleura (arrow), a finding that was subsequently confirmed at surgery and histopathologic analysis. (b) Chest CT	
	commind at surgery and instopathologic analysis. (b) Chest C1	

	scan obtained in a different patient snows an endobronchial mass	
	(arrow) less than 2 cm from the carina. Pathologic analysis	
	confirmed malignant carcinoid tumor, which can be staged using	
	the 7th edition of the TNM staging system. (c) Chest CT scan	
	obtained in a third patient shows a left lower lobe mass over 7	
	cm in diameter (arrow).).	6
E:- (22).		U
Fig. (22):	Stage T3 tumors. Chest CT scan shows a primary mass (arrow)	
	with satellite nodules (arrowheads) in the right lower lobe. This	
	is considered stage T3 disease in the 7th edition (stage T4	
	disease in the 6th edition)	6
Fig. (23):	Stage T4 tumors. Chest CT scan shows a primary lung tumor in	
0 ()	the right upper lobe (long arrow) with a smaller separate nodule	
	in the right lower lobe (short arrow). In the 7th edition, this is	
	considered stage T4 disease (stage M1 [metastatic] disease in the	
	6th edition))	7
E:~ (24).	· ·	/
Fig. (24):	Stage T4 tumors. Chest CT scan shows a right upper lobe mass	
	(arrow) with mediastinal and carinal invasion, ipsilateral	
	loculated pleural effusion, and thickening and enhancement of	
	the pleura. Note the tumor encasement and resultant narrowing	
	of the right main-stem bronchus (arrowhead). The pleural	
	thickening and enhancement, although nonspecific, are	
	suggestive of metastatic pleural disease. In the 7th edition,	
	proved pleural carcinomatosis is considered stage M1a disease	
	(stage T4 in the 6th edition)	7
Fig. (25):	Stage N1 lymph nodes. (a) Chest CT scan obtained in a patient	
1 ig. (20).	with right-sided lung cancer shows an enlarged right hilar lymph	
	node (level 10) (arrow) measuring 15 mm in the short axis. (b)	
	Chest CT scan obtained in a different patient shows a left lower	
	lobe mass and an ipsilateral enlarged interlobar lymph node	0
F: (2.0	(level 11) (arrow) measuring 11 mm in the short axis	8
Fig. (26):	Stage N2 lymph nodes. (a) Chest CT scan shows an enlarged	
	(1.6-cm) right upper paratracheal lymph node (level 2)	
	(arrowhead). (b) Chest CT scan obtained in a different patient	
	shows an enlarged (1.5-cm) right lower paratracheal lymph node	
	(level 4) (arrowhead). Like the lymph node in a, it is clearly to	
	the right of the new border proposed by the IASLC (ie, the left	
	lateral border of the trachea). (c) Chest CT scan obtained in a	
	third patient shows a right lower lobe mass (white arrow) with	
	an enlarged (1.6-cm) subcarinal lymph node (level 7) (black	
	arrow)	8
Fig. (27):	Stage N3 lymph nodes. (a) Axial PET/CT image of the chest	O
Fig. (27):		
	shows a primary mass in the left lung (arrow) and a right lower	
	paratracheal lymph node (arrowhead), both of which	
	demonstrate intense radiotracer uptake. Metastatic involvement	
	of the lymph node was confirmed at mediastinoscopic resection.	
	(b) Chest CT scan obtained at the lung apex in a different patient	

	shows enlarged bilateral supraclavicular lymph nodes (arrows).	
	Metastatic involvement was confirmed at excisional biopsy	39
Fig. (28):	Schematic shows ionic agitation by alternating electric currents.	
	The tissue ions are agitated as they attempt to follow the changes	
	in direction of alternating electric current. The agitation results	
	in frictional heat around the electrode	41
Fig. (29):	Various radiofrequency (RF) electrodes: a single needle design	
	(Cool Tip, Valley lab System, and Tyco), b cluster electrode	
	(Cool Tip Cluster, Valley lab, Tyco); multi-tined electrodes (c	
	LeVeen, Radio therapeutics, Boston Scientific c; d Starburst XL;	
	e perfused Talon needle, Angio Dynamics-RITA); f internally	
	cooled, bipolar single needle electrode	45
Fig. (30):	Multitined expandable probe	
Fig. (31):	Valley Lab Cool-Tip cluster probe	
Fig. (32):	CT and gross pathologic appearances of ablated metastasis	
Fig. (33):	Sequential computed tomography (CT) fluoroscopy images	0 =
118. (00).	obtained during the creation of artificial pneumothorax	59
Fig. (34):	CT suite during lung RFA.	
Fig. (35):	(a) CT scan showing a biopsy proven recurrent squamous cell	01
115. (00).	cancer post radiotherapy in the left upper lobe (LUL). (b)	
	Electrode deployed to 4 cm. (c) Immediate post-ablative CT	
	scan showing bubbles within the ablated tumor and an area of	
	GGO surrounding the tumor. (d) CT scan 3 weeks post ablation	
	shows a large cavity at the treatment site with an air-fluid level.	
	(e) CT scan showing an inserted drain through which 250 ml of	
	frank pus were drained	63
Fig. (36):	CT image shows a patient undergoing radiofrequency ablation.	05
11g. (30).	The tip of the device is inside the lesion	64
Fig. (37):	CT image of the same patient shown in Fig.36, at pulmonary	0¬
11g. (37).	window setting. The ablated lesion is surrounded by ground-	
	glass opacification, and this represents an optimal result	
	immediately after radiofrequency ablation	64
Fig. (38):	CT image of the ablated lesion of the patient shown in Fig 31, at	0¬
11g. (30).	mediastinal indow setting. The lesion is totally necrotized	
	immediately after the radiofrequency ablation	65
Fig. (39):	CT image obtained 6 months after radiofrequency ablation. The	02
1 1g. (37).	ablated lesion of the patient shown in Fig.31 appears hypo	
	dense, unenhanced and decreased in size. These findings	
	indicate complete ablation	65
Fig. (40):	CT image obtained 6 months after radiofrequency ablation.	02
11g. (40).	These findings indicate complete ablation.	66
Fig. (41).	Contrast enhanced follow-up CT image at one year reveals local	00
11g. (41).	Recurrence of the lesion	66
Fig. (42):	Left upper lobe (LUL) tumor treated with RFA. A: Pre-RFA	00
11g. (74).	chest CT scan demonstrating LUL speculated 3.3-cm mass. B:	
	Intraoperative image of RFA electrode impaling the tumor via a	
	percutaneous approach. C: CT scan 5 months after RFA. Note	
	percutaneous approach. C. Cr scall 3 months after NTA. Note	

	the central hypo attenuation and decreased density of the lesion.	
	D: PET scan 5 months after RFA demonstrates LULn (arrow)	67
Fig. (43):	(A) CT scan showing radiofrequency ablation of right lower lobe	
	colorectal metastasis. (B) Follow-up CT scan 2 months post	
	ablation demonstrates a large cavitary lesion at the site of	
	ablation. The patient was asymptomatic and no additional	
	interventions were performed	68
Fig. (44):	(A) CT scan showing biopsy-proven left upper lobe metastasis	
0 \ /	from colon cancer. (B) Radiofrequency ablation of the lesion	
	with adjacent parenchymal hemorrhage and ground glass	
	changes. (C) Follow-up CT scan 1 month post ablation	
	demonstrates an enlarged ablation zone that gradually regresses	
	at the 6-month follow up CT scan (D) and at the 1-year follow-	
	up study (E)	69
Fig. (45):	(A) Radiofrequency ablation of biopsy-proven right upper lobe	
	NSCLC. (B) Immediate post-procedural pneumothorax seen on	
	CT scan. (C) Chest x-ray demonstrating residual pneumothorax	
	and subcutaneous emphysema following chest tube insertion	76
Fig. (46):	(A) Radiofrequency ablation of two pulmonary metastases in the	
3 ()	left upper lobe. Parenchymal hemorrhage is seen anterior to the	
	more posterior lesion but did not preclude radiofrequency probe	
	insertion. (B) Pulmonary hemorrhage in the left upper lobe seen	
	immediately following ablation. (C) Follow-up CT scan	
	2months after ablation demonstrates interval resolution of the	
	parenchymal hemorrhage	77
Fig. (47):	Case 1	
Fig. (48):	Case 2	90
Fig. (49):	Case 3	94
Fig. (50):	Case 4	96
Fig. (51):	Case 5	97
Fig (52).	Case 6	07

List of Tables

Fig. No.	Title	Page No.
Table (1):	The non-small cell type is the most prevalent by far 27	
Table (2):	Selection Criteria to determine When to Use RFA 49	
Table (3):	Modified RECIST Criteria LD, largest diameter of lesion; FDG, fluorodeoxyglucose; SUV, standardized uptake value of fluorodeoxyglucose. A Standard uptake value of 18-FDG on PE scan	
Table (4):	Studies reporting survival outcomes of patients with stage INSCLC who underwent percutaneous RF ablation 82	
Table (5):	Studies reporting survival outco colorectal cancer lung metast percutaneous RF ablation	ases who underwent

List of Abbreviations

3D : Three dimention

COPD : Chronic obstructive pulmonary disease

CM : Centimeter

CT : Computed Tomography.

FDA : food &drug administration

GGO: Ground glass opacification.

H : Hounsefeild unit

mA : Milliamber

MHZ : Mega hertz.

mm : Milli-meter.

MRI : Magnetic resonance imaging

RF : Radiofrequency

RFA : Radiofrequency ablation

INTRODUCTION

ung cancer kills more patients each year than breast, colon and prostate cancer combined (*Terrance et al.*, 2011).

Patients with advanced non-small cell lung carcinoma (NSCLC) have a median survival time of 6–8 months and a 1-year survival rate of only 10–20% (*Kelekis et al.*, 2006).

Surgical resection remains the treatment of choice for patients with early-stage non small cell lung cancer. However, some patients are not surgical candidates because of medical problems. Therefore, alternative therapies are considered in these medically inoperable patients. Radiofrequency ablation has been used clinically for more than 12 years, with many studies reporting its safety and efficacy (*Terrance et al.*, 2011).

RF ablation is becoming a viable option for the treatment of metastatic disease of the lung (*Scheneider et al.*, 2009).

The effectiveness of radical Radiotherapy for stage I/II medically inoperable NSCLC patients, overall five-year survival ranged 0–42% (*Rowell et al., 2003*).

The role of chemotherapy in NSCLC has primarily been for patients with more advanced disease alone or in conjunction with radiotherapy (*Strauss et al.*, 2004).

RFA of lung malignancies is performed with two basic rationales in the first group it is used with an intention of achieving definitive therapy, in the second group it is used as a palliative measure (*Dupuy et al.*, 2000).

Underlying principle of thermal ablation is that coagulative necrosis and cell death occur immediately at temperatures greater than 60-C. In clinical practice, RFA of lung tumors routinely achieves temperatures greater than 70-C (*Terrance et al.*, 2011).

Multiple imaging techniques [ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET)] have been used to guide the percutaneous placement of the RF energy applicators. For lung lesions, CT and MRI are the only modalities that can be used (*Kelekis et al.*, 2006).

RF ablation is becoming a viable option for the treatment of metastatic disease to the lungs. After ablation, histology shows typical zones of thermal damage, radiating away from the central heat source (*Jaskolka et al.*, 2010).

An artificial pneumothorax was assumed to be effective for pain relief in RF of peripherally subpleural tumors (*Lee et al.*, 2007).

Intra-parenchymal hemorrhage typically resolves without intervention; however, Proper patient selection for ablation therapy, by means of excluding all possible causes of coagulopathy, and a refined technique of avoiding traversing pulmonary vasculature in the ablation track, can prevent catastrophic results (*Nour-Eldin et al.*, 2011).

Re-RF ablation for lung tumors was completed successfully without any major complications. However, re-RF ablation for unresectable lung tumors previously treated with RF ablation showed a high rate of local progression (*Okuma et al.*, 2008).

AIM OF THE WORK

he purpose of the essay is to review the principles of radiofrequency ablation, its clinical application and role in the management of primary and metastatic lung tumors.

US & CT RADIOLOGICAL ANATOMY AND TECHNIQUES

i. Normal Sonographic Anatomy:

Itrasound is a reliable and efficient imaging method to evaluate a wide range of clinical problems in the chest and to guide diagnostic and therapeutic procedures. Although the ribs, spine, and air filled lung act as barriers to ultrasound visualization of intrathoracic diseases, the presence of fluid in the pleural space and tumor, consolidation, or atelectasis in the lung provide ample sonographic windows for evaluation (McLoud et al., 1991).

Up to 99% of the ultrasound wave is reflected in the healthy lung. Intrapulmonary processes can be detected by sonography only when they extend up to the visceral pleura or can be imaged through a sound-conducting medium such as fluid or consolidated lung tissue (*Beckh et al.*, 2002).

A high-resolution linear transducer of 5–10 MHz is suitable for imaging the thoracic wall and the parietal pleura (*Mathis et al.*, 2007).

More recently introduced probes of 10–13 MHz are excellent for evaluating lymph nodes, pleura and the surface of the lung (*Gritzmann et al.*, 2005).

For investigation of the lung a convex or sector probe of 7–10 MHz provides adequate depth of penetration. The investigation is performed as far as possible with the patient seated, during inspiration and expiration, if necessary in combination with respiratory maneuvers such as coughing

or "sniffing." Raising the arms and crossing them behind the head causes intercostal spaces to be extended and facilitates access. The transducer is moved from ventral to dorsal along the longitudinal lines in the thorax (*Mathis et al.*, 2007). (Fig.1).

- Parasternal line.
- Mid clavicular line.
- Anterior, middle and posterior axillary line.
- Lateral and medial scapular line.
- Para vertebral line (*Mathis et al.*, 2007).(**Fig 1**)

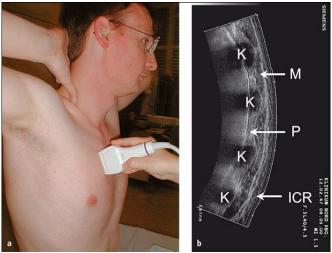


Fig. (1): Examination of the seated patient (a) Linear probe placed longitudinally on the right parasternal line. (b) Corresponding sonographic longitudinal panoramic image. K cartilage at the point of insertion of the rib, ICR intercostal space, M muscle, P line of the pleura (Mathis et al., 2007).

Subsequent transverse transducer movement parallel to the ribs in the intercostal space provides the additional information required for accurate localization of the respective finding (*Mathis et al.*, 2007) (Fig. 2).