GENETIC IMPROVEMENT IN RICE FOR RESISTANCE TO SOME DISEASES USING GAMMA RAYS AND MOLECULAR TECHNIQUES

 $\mathbf{B}\mathbf{v}$

IBRAHIM OSAMY IBRAHIM HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

GENETIC IMPROVEMENT IN RICE FOR RESISTANCE TO SOME DISEASES USING GAMMA RAYS AND MOLECULAR TECHNIQUES

Ph.D. Thesis
In
Agric. Sci. (Genetics)

By

IBRAHIM OSAMY IBRAHIM HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2011

APPROVAL COMMITTEE

Professor of Genetics, Fac. Agric., Minia University	
Dr. ABDEL-KADER YOUSIF GAMAL EL-DIN	
Professor of Genetics, Fac. Agric., Cairo University	
Dr. SALAH EL-DIN SAYED EL-ASSAL	
Professor of Genetics, Fac. Agric., Cairo University	
Dr. MOHAMED HASSANIN SOLIMAN	
Professor of Genetics, Fac. Agric., Cairo University	

Date: 3 / 7 / 2017

SUPERVISION SHEET

GENETIC IMPROVEMENT IN RICE FOR RESISTANCE TO SOME DISEASES USING GAMMA RAYS AND MOLECULAR TECHNIQUES

Ph.D. Thesis
In
Agric. Sci. (Genetics)

By

IBRAHIM OSAMY IBRAHIM HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2011

SUPERVISION COMMITTEE

Dr. MOHAMED HASSANIN SOLIMAN Professor of Genetics, Fac. Agric., Cairo University

Dr. SALAH EL-DIN SAYED EL-ASSAL Professor of Genetics, Fac. Agric., Cairo University

Dr. ABDEL-SHAFY IBRAHIM RAGAB Professor of Plant Breeding, Nuclear Research Center, Atomic Energy Authority Name of Candidate: Ibrahim Osamy Ibrahim Hassan Degree: Ph.D.

Title of Thesis: Genetic Improvement in Rice for Resistance to Some

Diseases Using Gamma Rays and Molecular Techniques

Supervisors: Dr. Mohamed Hassanin Soliman

Dr. Salah El-Din Sayed El-Assal Dr. Abdel-Shafy Ibrahim Ragab

Department: Genetics Approval: 3/7/2017

ABSTRACT

Rice diseases are one of the major limiting factors of rice production worldwide specially, blast (*Magnaporthae grisea*) and bakanae or foot rot (*Fusarium moniliforme*) diseases. Therefore, this study was conducted to improve rice for resistance to blast and bakanae diseases as well as yield and yield related traits using gamma rays and Simple Sequence Repeats (SSR) technique. Where grains of three local rice cultivars Giza 177, Sakha 101 and Sakha 104 were irradiated with different doses of gamma rays (0, 150, 200, 250 and 300 Gy). Eleven rice mutants were selected and evaluated for resistance to blast and bakanae diseases under natural and artificial infection conditions in M₃ and M₄ generations. Molecular screening and genetic diversity of resistance (R) genes to blast and bakanae diseases were performed for the selected mutants and its parents using 22 SSR and 3 specific markers.

Results of both natural and artificial infection showed that out of the eleven selected mutants only nine mutants were resistant; four mutants were highly resistant to blast and bakanae diseases at seedling and adult stages under natural infection in permanent field and artificial infection in greenhouse while, five mutants were resistant to blast disease and susceptible to bakanae disease.

Results of SSR analysis revealed that all markers produced a total of 72 alleles with 13 unique bands. The genetic similarity between 11 rice mutants and its parents ranged from 5% between mutant SK4151 and Sakha 101 to 73% between mutant SK4201 and its parent Sakha 104.

Molecular screening of R genes to blast showed that blast resistant mutants have a combination of some partial resistance genes, Pi40(t), Pi20(t), Pi35(t); and complete resistance genes (Pib, Pik, Pik-h, Pita, Piz) that confer durable resistance to all blast races. In contrast, the susceptible mutants showed high susceptibility to the most of tested blast races because it were not possess genes Pik-s, Pik-h and Pi9 that linked to RM144, RM224 and RM541 markers, respectively. Therefore, these R genes seemed to play a significant role in resistance to the most of tested races of blast disease.

For bakanae disease, RM9, a specific marker for bakanae resistance, showed one unique band (180 bp) for SK115 mutant that resistant only to isolate 10. Whereas each of the mutants SK4152, SK4154 and SK120 were discriminated by one band (161, 161 and 136 bp, respectively) that were a highly resistant to both bakanae isolates 10 and 20.

Key words: Rice, gamma rays, mutation, blast, bakanae, resistance genes, SSR.

ACKNOWLEDGEMENT

Unlimited thanks for Allah, the greatest and almighty, on his uncountable and infinite graces, guided me to complete this work.

I would like to express my deepest thanks, gratitude and deep appreciation to **Dr. Mohamed Hassanin Soliman**, Professor of Genetics, Faculty of Agriculture, Cairo University, for suggesting the problems, supervision, continued assistance, guidance, and encouragement. This helped me to complete the work and present it in this form.

I wish to express my sincere appreciation and deep gratitude to **Dr. Salah El-Din Sayed El-Assal,** Professor of Genetics, Faculty of Agriculture, Cairo University, for his directing, supervision, continuous encouragement and valuable advices during the preparation and finalization of the present work, and for reviewing the manuscript.

Deep thanks for **Dr. Abdel-Shafy Ibrahim Ragab**, Professor of Plant Breeding, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA), for suggesting the problems, energetic guidance, advice and valuable help through the present investigation and continuous encouragement during the preparation and finalization of this work.

I would like to express my deepest thanks and sincere appreciation to **Dr. Rabie A. El-Shafey**, Senior Researcher of Rice Research and Training Center, Agricultural Research Center, for helping me to finish the diseases evaluation part in this work, and for reviewing the manuscript.

Sincere thanks are extended to all staff members of Plant Res. Dept., NRC, EAEA, and my friends specially Dr. M. Ayaad, Dr. M. Basyouny, Dr. Khaled Elazab, Mr. M. Ali, Dr. M. Abdelrazak, Dr. Sherif yousif, Dr. Hussien Elzaher and Ms. Wafaa Adly for helping me in this work specially in field experiments.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Mutation induction <i>via</i> gamma irradiation in rice	5
2. Resistance of blast disease in rice	9
3. Resistance of bakanae disease in rice	14
4. Molecular markers and rice diseases	17
MATERIALS AND METHODS	21
RESULTS AND DISCUSSION	33
1. Field experiment	33
a. Analysis of variance	33
b. Genetic parameters of studied traits	34
c. Mean performance of studied traits in two generations	38
1. Plant height	38
2. Number of tillers per plant	39
3. Panicle length	40
4. 100-grain weight	42
5. Number of filled grains per panicle	43
6. Grain yield per plant	45
d. Mean performance of 11 selected mutants in the M ₃ generation.	46
2. Evaluation of diseases resistance	50
a. Evaluation of resistance to blast disease	50
1. Evaluation under natural infection	51
2. Evaluation under artificial infection	52
b. Evaluation of resistance to bakanae disease	56
3. Molecular genetic analysis	59
a. Microsatellite marker analysis	59
b. Genetic relationship between 11 rice mutants and its parents using SSR markers	60

c. SSR markers for blast disease resistance	63
d. SSR markers for bakanae disease resistance	69
SUMMARY	7 3
REFERENCES	83
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	page
1	The scale used in the standard evaluation system for rice blast	26
2	Description of markers used in the study	31
3	Mean squares for yield and yield related traits of three rice cultivars treated with gamma rays in the M_2 generation	33
4	Mean squares for the studied traits of three rice cultivars treated with gamma rays in the M_3 generation	34
5	Genetic parameters for yield and yield related traits of three rice cultivars in the M ₂ generation	35
6	Genetic parameters for yield and yield related traits of three rice cultivars in the M_3 generation	35
7	Effect of gamma rays on plant height trait of three rice cultivars in the M_2 and M_3 generations	38
8	Effect of gamma rays on number of tillers per plant trait of three rice cultivars in the M_2 and M_3 generations	39
9	Effect of gamma rays on panicle length trait of three rice cultivars in the M_2 and M_3 generations	41
10	Effect of gamma rays on 100-grain weight trait of three rice cultivars in the M_2 and M_3 generations	42
11	Effect of gamma rays on number of filled grains per panicle trait of three rice cultivars in the M_2 and M_3 generations.	44
12	Effect of gamma rays on grain yield per plant trait of three rice cultivars in the M_2 and M_3 generations	45

13	Mean performance of the studied traits of 11 selected rice mutants and its parents in the M_3 generation	47
14	Reaction of 11 rice mutants and its parents to blast disease under natural infection in blast nursery and permanent field conditions in the M ₃ and M ₄ generations	51
15	Reaction of 11 rice mutants and its parents to blast disease under artificial infection in the M ₄ generations	53
16	Reaction of 11 rice mutants and its parents to bakanae disease under artificial infection in greenhouse in the M_4 generations.	57
17	List of specific markers and SSR markers linked to resistance genes and used in the study	60
18	Similarity matrices between 14 rice genotypes using 25 markers	61
19	Unique positive markers related to blast resistance for 14 rice genotypes using 24 markers	64
20	Genotypic screening of 14 rice genotypes for blast resistance genes linked with SSR markers	65

LIST OF FIGURES

No.	Title	Page
1	Molecular weight of DNA marker (100 bp DNA ladder)	30
2	The early mutant SK115 and its parent Sakha 101 cultivar.	48
3	The longest panicle of SK125 and SK4153 mutants as compared with its parents Sk101 and Sk104, respectively	48
4	The heaviest grain of SK4202 mutant as compared with its parent Sk104	49
5	Dendrogram resulting from UPGMA cluster analysis of 11 rice mutants and its parents using 25 SSR primers	62
6	Microsatellite profile of 11 rice mutants obtained <i>via</i> gamma irradiation and its parents using 21 SSR and 3 specific markers.	68
7	Microsatellite profile of 11 rice mutants obtained <i>via</i> gamma irradiation and its parents using SSR primer RM9	70

INTRODUCTION

Rice (*Oryza sativa* L.) is the staple food source for half of the world's population. After wheat, rice is the second largest source of calories in the human diet and provides approximately 20% of the total calories consumed worldwide (Babaei *et al.*, 2011). Also, it is currently grown on approximately 163 million hectares worldwide with production of 741 million tons (FAO, 2014). In Egypt, rice is annually grown on approximately 1.4 million feddan with production of 5.46 million tons (FAO, 2014).

Rice diseases are one of the major limiting factors of rice production worldwide. In Egypt, the major rice diseases are blast, brown spot, bakanae disease, and white tip nematode. However, rice diseases reduce rice yield by about 5 % in mildly infection. In epidemic conditions, yield losses may reach as high as 30~50 % (Hammoud and Gabr, 2014). Rice blast caused by fungal pathogen *Magnaporthe grisea*, is one of the most destructive diseases affecting rice production worldwide, which caused an economic loss up to 65% yield in susceptible cultivars under favorable conditions (Singh *et al.* 2015). The infections occur on the leaves, causing spindle-shaped lesions with a grey or white center to appear, or on the panicles, which turn white and die before grain filling stage (Selvaraj *et al.*, 2011). The genetic control of blast resistance is a complex trait and involves both major and minor genes with complementary or additive effects (Wu *et al.*, 2005 and Li *et al.*, 2007).

Bakanae or foolish seedling disease caused by *Fusarium* moniliforme (Sheld.), telomorph: Gibberella fujikuroi (Sawada) is an

important fungal disease in rice. It usually causes a yield loss of 10~20% and the loss could be higher than 70% at outbreak of the disease (Ou, 1985). The infected plants turn pale yellow and exhibit chlorosis and abnormal elongation, poor grain ripening such as empty panicles, stem and foot rot. In advanced stages of bakanae disease, infected plants fall down and die because they are no longer sturdy enough to support their own weight (Hwang *et al.*, 2013).

Mutation breeding involves development of new varieties that characterized with disease resistance, early maturity and better productivity of germplasm origin using chemical and physical mutagens (Shu *et al.*, 2012). Gamma rays, physical mutagen, has proven to be a useful tool for introducing new traits that may result in crop improvement also, it can be used as a complementary tool in plant breeding programs (Babaei *et al.*, 2010). The use of induced mutations over the past five decades has played a major role in improvement of crop over the world, and has led to the official release of 3222 mutant varieties from 170 different plant species (Raina *et al.*, 2016).

Molecular markers are powerful tools in assessment of genetic variation and in elucidation of genetic relationships within and among species (Chakravarthi and Naravaneni, 2006), and increasing the effectiveness of selection in breeding programs. A wide range of molecular markers such as Random Amplified Polymorphic DNA (RAPD), simple sequence repeats (SSRs) and Amplified Fragment Length Polymorphism (AFLP) have been applied for genetic diversity studies in rice (Kumar and Bhagwat, 2012).. Among these markers, simple sequence repeats (SSRs) are useful for several applications in

plant genetics and breeding because of their reproducibility, multiallelic nature, co-dominant inheritance, relative abundance and good genome coverage in rice (Kumar *et al.*, 2013). Therefore, this study was conducted to improve rice for resistance to blast and bakanae diseases as well as yield and yield related traits using gamma rays and molecular techniques. The objectives were to:

- Estimate genetic parameters of yield and yield related traits in M₂ and M₃ bulks derived from irradiated three rice cultivars (Giza 177, Sakha 101 and Sakha 104) with different doses of gamma rays.
- 2. Evaluate the selected genotypes which have useful traits (*e.g.* high yield, early maturity) for resistance to blast and bakanae diseases under natural and artificial infection conditions.
- 3. Characterize the selected mutants at molecular level using SSR technique.

REVIEW OF LITERATURE

1. Mutation induction via gamma irradiation in rice

Mutation induction techniques can be utilized for crops improvement through increase the genetic diversity which enables plant breeders to select according to the desired breeding objectives (Abdul Haris *et al.*, 2013). Mutation breeding involves development of new varieties that characterized with disease resistance, early maturity and better productivity using chemical and physical mutagens (Shu *et al.*, 2012). Gamma rays have been effective and are more commonly used in mutation induction than other ionizing radiations because of their availability and relatively high power of penetration (Moussa, 2011). Also, it was employed to develop 64% of the radiation-induced mutant varieties, followed by X-rays (22%) (Ahloowalia *et al.*, 2004).

Baloch *et al.* (2006) irradiated rice variety IR6A (non-aromatic) with different gamma rays doses (150, 200, 250 and 300 Gy). The high yielding mutant IR6-25A developed from gamma rays (150 Gy). It has given consistently better paddy yield as compared to its parent, check and other promising mutants. On the basis of three years average, it gave 20% and 23% higher paddy yield than IR6 and check variety Shadab, respectively.

Uddin *et al.* (2007) identified four salt tolerant rice mutant lines by screening 400 M₂-families derived from the japonica cultivar 'Drew' after irradiation with dose 200 Gy of gamma rays from ¹³⁷Cs source. The selected mutant lines had significantly higher number of filled grains, lower grain sterility and higher grain yield as compared with