Prevalence of obesity among hemodialysis patients

Thesis

Submitted for partial fulfillment of M.Sc.

Degree of internal medicine

By

Mohamed Hashem Abd Elmegid Ismail

M.B. B.Ch., Faculty of Medicine
Assiut University

Supervised by

Prof. Dr.Mahmoud Abd Elfatah

Professor of general medicine and nephrology Faculty of Medicine, Ain Shams University

Dr.Essam Nour Eldin

Lecturer of general medicine and nephrology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo 2011

نسبة حدوث السمنة بين مرضى الاستصفاء الدموي

رسالة مقدمة من

الطبيب /محمد هاشم عبد المجيد اسماعيل

توطئه للحصول على درجة الماجستير في الباطنة العامة

تحت إشراف

أد / محمود عبد الفتاح

أستاذ أمراض الباطنة و الكلى

كلية الطب - جامعة عين شمس

د/ عصام نور الدين

مدرس أمراض الباطنة و الكلى كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس القاهرة ٢٠١١

Summary & Conclusions

For more than a decade, the relationship and comorbidity of obesity among chronic hemodialysis patients has been an area of active clinical research.

Although several studies have shown that obesity is one of causes of renal impairment and other medical problems such as diabetes mellitus, hypertension, ischemic heart disease, obesity in hemodialysis patients improve quality of life what is called reverse epidemiology.

Obesity is measured by body mass index and waist hip ratio, some studies consider waist hip ratio (central obesity) good indicator for cardiovascular risk factor.

The aim of this work was to study the prevalence of obesity among hemodialysis patients and to find relation between obesity and some clinical variables.

In this study obesity was independently associated with increased risks for chronic renal failure, obesity was found in 57.4% of total patients included in this study.

The most common causes for renal failure were hypertension (104 patients from 202 patients 51.5%), diabetes mellitus (24 patients from 202 patients 11.5%).

Contents

Content	Page
Introduction	1
Review of literature	
Classification of obesity	2
Assessment of obesity	9
Epidemiology of obesity	26
Health consequences of obesity	30
Obesity related kidney disease	53
Metabolic syndrome	64
Role of obesity and metabolic syndrome in CKD initiation	66
Renal benefit from weight reduction	71
Obesity and hemodialysis	73
Patients and Methods	81
Results	85
Discussion	120
Conclusion	128
Recommendations	130
References	131
Arabic summary	

List of Tables

Table	Title			
Table 1	WHO classification of weight			
Table 2	Proposed functional and disease-related staging for obesity			
Table 3	classification of adult obesity			
Table 4	Sex distribution among the studied population			
Table 5	Age distribution among the studied population			
Table 6	Cause of renal failure among the studied population			
Table 7	Comorbidities among the studied population			
Table 8	Duration of dialysis the studied population	90		
Table 9	Anthropometric measures of the studied population	90		
Table 10	Waist circumference among studied population	91		
Table11	Waist hip ratio among studied population	92		
Table 12	BMI among the studied population:	93		
Table 13	Cause of Renal Failure in relation to waist circumference:	95		
Table 14	Cause of Renal Failure in relation to waist circumference for males:	96		
Table 15	Cause of Renal Failure in relation to waist circumference for			
Table 16	Cause of Renal Failure in relation to WHR			
Table 17	Cause of Renal Failure in relation to WHR for males			
Table 18	Cause of Renal Failure in relation to WHR for females			
Table 19	Cause of Renal Failure in relation to BMI			
Table 20	Co morbidities of RF patients in relation to BMI 1			
Table 21	Co morbidities of RF patients in relation to waist circumference 1			
Table 22	Co morbidities of RF patients in relation to waist circumference for males			
Table 23	Co morbidities of RF patients in relation to waist circumference			
Table 24	Co morbidities of RF patients in relation to WHR	106		
Table25	le25 Co morbidities of RF patients in relation to WHR in males			
Table 26	6 Co morbidities of RF patients in relation to WHR in females			
Table 27	27 Age and duration of dialysis in relation to waist circumference			
Table 28	Age and duration of dialysis in relation to waist circumference in males			
Table 29	Age and duration of dialysis in relation to waist circumference in female			
Table 30	:Age and duration of dialysis in relation to BMI	111		
Table 31	:Age and duration of dialysis in relation to WHR			
Table 32	:Age and duration of dialysis in relation to WHR in males	112		
Table 33	:Age and duration of dialysis in relation to WHR in females	112		
Table 34	: Correlation between age of starting dialysis and different anthropometric measures:			

List of Figures

Figure	Title			
Figure 1	measure of waist circumference			
Figure 2	measure waist and hip circumference			
Figure 3	Prevalence of obesity in some countries undergoing epidemiological surveys.			
Figure 4	Trends in childhood obesity prevalence in some European countries. Modified from:			
Figure 5 A	5 A BMI and risk of ischemic stroke			
Figure 5 B	5 B BMI and risk of hemorrhagic stroke			
Figure 6	obesity and chronic kidney disease			
Figure 7	potential mechanisms of renal injury in patients with obesity and obesity initiated metabolic syndrome			
Figure 8	Reverse epidemiology of obesity in dialysis patients compared with the general population			
Figure 9	e 9 Sex distribution among the studied population			
Figure 10	Cause of renal failure among the studied population:			
Figure 11	Figure 11 Comorbidities among the studied population			
Figure12	Figure 12 Waist circumference among studied population			
Figure 13	Figure 13 Waist hip ratio among studied population			
Figure 14	gure 14 BMI among the studied population:			
Figure 15	gure 15 Correlation between WC and BMI			
Figure 16	e 16 Correlation between WHR and BMI			
Figure 17	Correlation between WHR and WC	115		
Figure 18	re 18 Correlation between age of starting dialysis and different WC			

List of Abbreviations

WC	waist circumference	
ICD	International classification of diseases	
WHO	World Health Organization	
DEXA	dual energy absorptiometry	
MRI	magnetic resonance imaging	
CT	computerized tomography	
BIA	bio-electric impedance analysis	
BMI	Body mass index	
WHR	The waist-to-hip ratio	
OSA	obstructive sleep apnea	
OHS	obesity hypoventilation syndrome	
GLUT	glucose transporter	
FFA	Free fatty acids	
HDL	High density lipoprotein	
CRP	C-reactive protein	
DM	diabetes mellitus	
LDL	Low density lipoprotein	
VLDL	very Low density lipoprotein	
HD	Hemodialysis	
LPa	Lipoprotein a	
NEFA	non esterified fatty acids	
CVD	cardiovascular disease	
NHANES	third National Health and Natrition Examination Company	
III	third National Health and Nutrition Examination Survey	
RAAS	renin-angiotensin-aldosterone system	
AHI	apnea-hypopnea index	
CNS	central nervous system	
REM	rapid eye movement	
WCRF	World Cancer Research Fund	
IGF-l	insulin-like growth factor -1	
GFR	Golmerular filtration rate	
PREVEND	Prevention of Renal and Vascular End Stage Disease	
TGF	transforming growth factor	
CKD	chronic kidney disease	
ESRD	End stage renasl disease	
TNF-α	Tumor necrosis factor α	
IL-6	Inter lukin -6	
SREBP	sterol regulatory element binding protein	

PD	Peritoneal dialysis	
CHF	congestive heart failure	
NCEP	Third report of the national cholesterol education program	
FSGS	focal segmental glomerulosclerosis	
ANP	Atrial Natriuretic Peptide	
cGMP	Cyclic Guanidine Monophosphate	
ICF	intra cellular fluid	
ECF	extra cellular fluid	
AVF	arterio venous fistula	
MCP-1	monocyte chemoattractant protein-1	
BV	Blood volume	
PAI-1	plasminogen activator inhibitor type-1	
ANP	Atrial Natriuretic Peptide	
INF-γ	Interferon gamma	
MHD	maintenance hemodialysis	

Introduction

Obesity, characterized by the accumulation of excess body fat, is currently present in one-fifth or more of the adult population in most Western societies (Seidell JC et al., 2005).

Despite the fact that increased body fat can have important implications for health and well being, the presence of increased body fat alone does not necessarily imply or reliably predict ill health (*Pischon T et al., 2008*).

Thus, the current anthropometric classification systems, based on simple clinical measures, such as height, weight or waist circumference (WC), do not accurately reflect the presence or severity of obesity-related health risks, co morbidities or reduced quality of life. Although the term 'morbid' is often added as a qualifier to describe severe obesity in cases where the health consequences of excess weight are evident, no clear definition or consistent use of this term exists. The current systems used to classify obesity therefore have limited application for clinicians and researchers.

Classification of obesity

*Historical approaches to classify obesity.

Past systems have used anatomical terms to characterize different phenotypes of the condition, both at a cellular level (hyperplasic vs. hypertrophic types) and based on the gross distribution of body fat depots. The observation by Vague in 1949 (Vague J et al., 1991) that individuals who have an android (upper body) vs. a gynoid (lower body) distribution of body fat have an elevated risk of various metabolic disorders has been confirmed by multiple studies and serves as the basis for sub classifying patients by measurement of WC or waist-to-hip ratio (Janssen I et al., 2004).

Etiological classifications of obesity reflect eclectic attempts to identify the numerous origins and pathways for the development of the obesity (ies) and various obesity syndromes. This approach was also adopted by the ICD 10th Edition for classification of obesity (World Health Organization. 2008). Although some of these recognized etiologies, such as endocrine-or drug-induced weight gain, have therapeutic implications, others such as 'simple' obesity, provide no meaningful reflection of etiology or guide to management.

Historical classification for obesity:

*Anatomical characteristics of adipose tissue and fat distribution:

An anatomical classification of obesity can be based on the number of adipocytes on the regional distribution of body fat, or on the characteristics of localized fat deposits. (Bray GA et al., 1978)

A-Size and number of fat cells

1- Hypertrophic obesity.

Enlarged fat cells are the pathologic sign of obesity Enlarged fat cells tend to correlate with an android or truncal fat distribution, and are often associated with metabolic disorders such as glucose intolerance, dyslipidemia, hypertension, and coronary artery disease. (*Bray GA et al.*, 2007).

2- Hypercellular obesity.

An increase in the number of fat cells usually occurs when obesity develops in childhood. Whether it begins in early or middle childhood, this type of obesity tends to be severe. Increased numbers of fat cells may also occur in adult life. (Bray GA et al., 2007).

B-Fat distribution:

- 1-Upper body obesity with excess subcutaneous truncal abdominal fat. (android)
- 2- Lower body obesity with excess gluteo femoral fat (gynacoid) (Pouliot MC et al., 1994)

Etiologic Classification

A -Neuroendocrine Obesity

- 1-Hypothalamic obesity
- 2- Cushing's syndrome
- 3-Hypothyroidism
- 4-Growth hormone deficiency
- 5-Polycystic ovary syndrome
- 6- hyperinsulinism

(Bray GAet al., 2004)

B-Iatrogenic causes.

Several drugs can cause weight gain, including a variety of psychoactive agents and hormones for example Tricyclic antidepressant, Monoamine oxidase inhibitors, Selective serotonin reuptake inhibitors. (Allison DB et al., 1999)

C- Sedentary Lifestyle.

A sedentary lifestyle lowers energy expenditure and promotes weight gain in both animals and humans (O'Dea K et al., 1993)

D- Genetic and Congenital Disorders.

Fore example Prader-Willi syndrome results from an abnormality on chromosome 15 q 11.2 that is usually transmitted paternally. This chromosomal defect produces a "floppy"baby who usually has trouble feeding. Overweight in these children begins at about 2 years and is associated with overeating, hypogonadism, and mental retardation (*Gunay et al.*, 1997).

E- Dietary obesity.

The amount of energy intake relative to energy expenditure is the central reason for the development of obesity. Voluntary overeating (repeated ingestion of energy exceeding daily energy needs) can increase body weight in normal-weight men and women. (Levitsky DA et al., 2005)

F-Psychological and Social Factors.

Obesity is more prevalent in lower socioeconomic groups Black males are less obese than white males, whereas black women shown high prevalence of obesity at all ages than white women

There is recognition that that there may be a complex relationship between psychological adjustment and obesity (Partonen T et al., 1998)

*Anthropometric classification of obesity:

Ideally, quantitative measurement of body fat would be the most direct determinant of obesity. However, there are no current methods that are precise, practical, economical and reliable for general use (Jebb SA et al., 1993). Instead, for simplicity, past and present definitions of obesity are based on anthropometric approaches that utilize simple clinical measures such as weight and height to quantify and define obesity. In 1997, the World Health Organization (WHO) endorsed BMI as the most useful measure of obesity and provided a classification of overweight in adults (World Health Organization.1998). Since then, the WHO BMI cut points for underweight, healthy weight, overweight and obese (classes I–III) have been internationally adopted by clinical guidelines and for population surveys. (Lau DCW et al., 2007) The additional anthropometric measurements of WC or waist-tohip ratio have been recommended because abdominal fat has been shown to provide an independent risk estimate beyond BMI alone. (Klein S et al., 2007), current guidelines recommend the measurement and recording of both BMI and WC(Third report of the national cholesterol education program (NCEP)2002) albeit with different cut points for different ethnic groups. (Razak F et al., 2007)

Table 1 WHO classification of weight

Weight status	Body mass index (BMI), kg/m²
Underweight	<18.5
Normal range	18.5-24.9
Overweight	≥25
Preobese ^a	25.0-29.9
Obese class I	30.0-34.9
Obese class II	35.0-39.9
Obese class III	≥40

(World Health Organization.1998)

Proposed functional and disease-related staging for obesity.

anthropometric classifications Although the current continue to serve their function as surrogate measures for the magnitude of body fat and its distribution and to assess progress in management, complementing these parameters with a simple disease-related and functional staging system would provide additional clinical information to guide and evaluate treatment. The rationale for a clinical staging system is also based on the notion that patients with current health problems related to obesity should be treated more aggressively, a staging system must aid in the equitable identification of patients, who would most likely benefit from aggressive weight management. The proposed staging system would be based on simple clinical assessments that include medical history, clinical and functional assessments as well as simple routine diagnostic investigations that are easily and widely available. Rather than simply categorizing patients based