# Evaluation of Adipokines (Adiponectin, Resistin and Ghrelin) in Women with Polycystic Ovary Syndrome

#### Thesis

Submitted for partial fulfillment of the Master degree in *Obstetrics & Gynecology* 

By

#### Mohamed Mostafa Mokhtar

Resident of Obstetrics and gynecology Ain Shams University Maternity Hospital

## Under Supervision of

## **Professor Mohamed Alaa Mohei El-Din Elghannam**

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

## **Professor Mohamed Elmandooh Mohamed**

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

## **Dr/ Ahmed Mohamed El-Kotb**

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

# Acknowledgement

First and foremost, I owe my deepest gratitude to **ALLAH** the most merciful for his grace and mercy for giving me the effort to complete this work.

Words do fail me to express my sincere gratitude to **Prof. Mohamed Alaa Mohei El-Din Elghannam**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his attentivness, follow up and the equipment with all facilities possible to complete this work. Without his corteous assistance and kind patience, this work would never had come to light.

I would also like to convey my deep appreciation and most gratefulness for **Prof. Mohamed Elmandooh Mohamed**, Professor of Obstetrics and Gynecology, Ain Shams University, for his constant guidance, experienced advice and great encouragement which have been of the most important.

A great appreciation and most gratefulness for **Dr/ Ahmed Mohamed El-Kotb**, Lecturer in Obstetrics and Gynecology, Ain Shams
University. The door to **Dr.Kotb** office was always open whenever I ran
into a trouble spot or had a question about my research or writing. He
consistently allowed this study to be my own work, but steered me in
the right direction whenever he thought I needed it.

I shall always be indebted to my brother **Khaled Afifi**. This achievement would never had been possible without him.

Finally, I must express my profound gratitude to my parents and fiancée for providing me with unfailing support and continuous encouragement throughout my years of study and the process of researching and writing the thesis.

Thanks for all your encouragement!

➤ Mohamed Mokhtar

# Tist of Contents

| Title                                      | Page No. |
|--------------------------------------------|----------|
| List of Tables                             | i        |
| List of Figures                            | iii      |
| List of Abbreviations                      | v        |
| Protocol                                   | vii      |
| Abstract                                   | xxiv     |
| Introduction                               | 1        |
| Aim of the work                            | 6        |
| Review of literature                       |          |
| Chapter (1): Polycystic Ovary Syndrome (PC | OS)7     |
| Chapter (2): Adipokines and PCOS           | 32       |
| Chapter (3): Insulin Resistance in PCOS    | 54       |
| Patients and Methods                       | 74       |
| Results                                    | 83       |
| Discussion                                 | 103      |
| Summary                                    | 118      |
| Conclusion                                 | 121      |
| Recommendations                            | 122      |
| References                                 | 124      |
| Arabic summary                             |          |

## List of Contents

# List of Tables

| Table No          | •                                           | Title        |               | Page No.         |
|-------------------|---------------------------------------------|--------------|---------------|------------------|
| <b>Table</b> (1): | Descriptive stand clinical da               |              |               | mographic<br>n87 |
| <b>Table</b> (2): | Descriptive staregards their land adipokine | normonal, l  | ipid, insulin | •                |
| <b>Table (3):</b> | Comparison regarding characteristics        | demographi   | ic and        |                  |
| <b>Table (4):</b> | Comparison regarding horn                   |              |               | subgroups<br>90  |
| <b>Table (5):</b> | Comparison regarding adip                   |              |               | subgroups 91     |
| <b>Table (6):</b> | Comparison regarding characteristics        | demographi   | ic and        | •                |
| <b>Table</b> (7): | Comparison regarding horr stratified subgr  | nonal profil | e.Compariso   | $\mathcal{L}$    |
| <b>Table (8):</b> | Comparison regarding glyc                   |              |               | subgroups<br>96  |
| <b>Table (9):</b> | Comparison regarding adip                   |              |               | subgroups        |
| <b>Table</b> (10) | : Least squares                             | multiple reg | gression mod  | del 99           |

## List of Tables

| Table (11): Regression equation                     | 99  |
|-----------------------------------------------------|-----|
| Table (12): Least squares multiple regression model | 100 |
| Table (13): Regression equation                     | 100 |
| Table (14): Least squares multiple regression model | 101 |
| Table (15): Regression equation                     | 101 |
| Table (16): Least squares multiple regression model | 102 |
| <b>Table (17):</b> Regression equation              | 102 |

# List of Figures

| Fig. No.            | Title Page No.                                                                        |
|---------------------|---------------------------------------------------------------------------------------|
| Figure (1):         | Polycystic Ovary as seen on Sonography 14                                             |
| Figure (2):         | Trans vaginal ultrasound scan of polycystic ovary                                     |
| Figure (3):         | Polycystic Ovary as seen on Sonography 14                                             |
| Figure (4):         | Summary of a targeted approach to therapy in polycystic ovary syndrome (PCOS)         |
| Figure (5):         | Obesity, Adipokines and Insulin resistance 33                                         |
| Figure (6):         | Interaction between adipocytes and immune cells                                       |
| Figure (7):         | Adipokines classified by functional role 37                                           |
| Figure (8):         | Inflammatory and acute-phase response proteins secreted from adipocytes               |
| Figure (9):         | Adiponectin and its signalling pathways 45                                            |
| <b>Figure (10):</b> | Structures of human and rat ghrelins 51                                               |
| Figure (11):        | Complex interaction between adipokines in β-cell specific effects                     |
| <b>Figure (12):</b> | Pathways to insulin resistance                                                        |
| Figure (13):        | An overview of peripheral insulin resistance and its role in the pathogenesis of PCOS |
| Figure (14):        | PCOS & peripheral insulin resistance                                                  |

| <b>Figure</b> (15): | Molecular mechanisms of insulin resistance in adipose tissue in PCOS                                                                              |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure (16):</b> | CONSORT 2010 flow diagram showing the recruitment and handling of the study population during the course of the study                             |
| <b>Figure</b> (17): | Bar graph summarizing demographic and clinical data of the two subgroups                                                                          |
| <b>Figure (18):</b> | Bar graph summarizing hormonal profile in the two subgroups90                                                                                     |
| <b>Figure</b> (19): | Bar graph summarizing adipokine profile in the two subgroups                                                                                      |
| <b>Figure</b> (20): | Scatter diagram for the relation between HOMA2-IR (y-axis) and adiponectin (upper left), gherlin (upper right), resistin (lower center)           |
| <b>Figure</b> (21): | Bar graph summarizing demographic and clinical data of the two subgroups                                                                          |
| <b>Figure</b> (22): | Bar graph summarizing hormonal profile in the two subgroups                                                                                       |
| <b>Figure</b> (23): | Bar graph summarizing glycemic profile in the two subgroups                                                                                       |
|                     | Bar graph summarizing adipokine profile in the two subgroups                                                                                      |
| <b>Figure</b> (25): | Scatter diagram for the relation between BMI (x-axis) and adiponectin (upper left), gherlin (upper right), resistin (lower center) on the y-axis. |

# Tist of Abbreviations

#### Abbr. Full Term AdipoR1 Adiponectin receptor **AMH** Ante Mullerian hormone **AMPK** AMP activated protein kinase **ASRM** American Society of Reproductive Medicine **BMI** Body mass index **CAH** Congenital adrenal hyperplasia **CRP** C-Reactive protein $\mathbf{DM}$ Diabetes mellitus **FSH** Follicle stimulating hormone **FSIVGTT** Frequently sampled intravenous glucose tolerance test **GHS** Growth hormone secretagogue Gonadotrophin releasing hormone **GnRH GTT** Glucose tolerance test **HMW** High molecular weight **HOMA** Homeostasis model assessment **IL**-6 Inter- leukin 6 IR Insulin resistance IRS Insulin receptor substrate **IVF** In vitro fertilization

## List of Abbreviations

**LH** luteinizing hormone

**NGF** Nerve growth factor

**NIH** National Institute of Health

**PAI** Plasminogen activator inhibitor

**PPAR**-α Peroxisome proliferator-activated receptor- α

**QOL** Quality of life

**QUICKI** Quantitative insulin sensitivity check index

**RELM** Resistin-like molecule

**SHBG** Sex hormone binding globulin

**SNPs** Single nucleotide polymorphisms

**TGF** Tumor growth factor

**TNF** Tumor necrosis factor

**TZDs** Thiazolidinediones

**VEGF** Vascular endothelial growth factor

**WBISI** Whole-body insulin sensitivity

WHO World health Organization

# Evaluation of Adipokines (Adiponectin, Resistin and Ghrelin) in Women with Polycystic Ovary Syndrome

# Protocol of Thesis

Submitted for partial fulfillment of the Master degree in

**Obstetrics & Gynecology** 

By

#### **Mohamed Mostafa Mokhtar**

Resident of Obstetrics and gynecology Ain Shams University Maternity Hospital

Under Supervision of

## Professor Mohamed Alaa Mohei El-Din Elghannam

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

## **Professor Mohamed Elmandooh Mohamed**

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

### **Dr/ Ahmed Mohamed El-Kotb**

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

## Introduction

Polycystic ovary syndrome (PCOS) is a common heterogeneous, heritable endocrine disorder characterized by irregular menstruation, hyperandrogenism and polycystic ovaries. According to Rotterdam ESHRE/ASRM, 2003 criteria, two out of three are enough to diagnose PCOS including oligobiochemical ovulation or anovulation. and/or hyperandrogenism, polycystic ovaries by ultrasound diagnosis should be done after exclusion of other causes that mimic the clinical features of PCOS as thyroid diseases, congenital adrenal hyperprolactinemia and hyperplasia, (Rotterdam, 2004).

The prevalence of PCOS is about 15%-20% when the ESHRE/ ASRM criteria are used. Clinical manifestations include oligomenorrhea or amenorrhea, hirsutism, and frequently infertility. Risk factors for PCOS in adults includes type 1 diabetes, type 2 diabetes, and gestational diabetes. Insulin resistance affects 50%-70% of women with PCOS leading to a number of comorbidities including metabolic syndrome (MetS) that include (central obesity, dyslipidemia, impaired glucose metabolism, and elevated pressure), hypertension, dyslipidemia, glucose intolerance, obesity and diabetes. Mental health problems as depression, bipolar disorder, anxiety, and eating disorders are also recorded (Sirmans and Pate, 2014).

PCOS originates in multiple genetic and environmental factors and its further development involves interaction of diverse organs or tissues (Harwood, 2012).

Adipose tissue is a versatile organ, crucial for maintaining homeostasis by storing and dispersing energy, producing and releasing adipokines and cytokines and free fatty acids and hormones, with the ability to influence other cells of the body in autocrine, paracrine and endocrine fashion. This highly metabolically active tissue is distributed throughout the body in discrete depots, and its development, expansion and energy balance are regulated by an integrated network of genetic, environmental, epigenetic and pharmacological factors (**Diedrich et al., 2015**).

Adipose tissue dysfunction as in obesity and PCOS leads to development of cardio-metabolic diseases including the metabolic syndrome, type 2 diabetes, inflammatory disorders, and vascular disorders that ultimately lead to coronary heart disease altering secretion pattern of its adipokines as adeponectin, leptin, and resistin (*Harwood*, 2012; *Akbarzadeh et al.*, 2012).

Though considered a low grade chronic inflammatory process (*Duleba et al.*, 2012), it needs to be fully evaluated that whether inflammatory cytokines also mediate the development of PCOS. Several investigations have shown that obesity is not necessarily present in women with PCOS

#### (Wang and Zhu, 2012).

Many studies demonstrated that some adipokines have multiple biological effects, however, it is still uncertain whether metabolic status could be associated with a peculiar inflammatory pattern in PCOS patients. Adiponectin is one of the most studied adipokines which is considered a protein hormone responsible for regulating multiple metabolic processes (**Diedrich et al., 2015**).

Many other proteins have been proposed as potential new markers of Insulin resistance in PCOS, such as resistin, leptin, RBP4, kisspetin and ghrelin, but their role is still controversial (**Polak et al., 2016**).

Resistin is an adipose-derived peptide hormone discovered in 2001 that potentially links obesity and diabetes mellitus (**Polak et al., 2016**).

Ghrelin is a multifunctional peptide hormone secreted principally in the stomach. It stimulates several biological functions including food intake, glucose release, cell proliferation and reproduction (**Polak et al., 2016**).

Insulin has a broad range of metabolic and mitogenic actions in many tissues (*Kahn 1985*). It is important to specify the biological action of insulin being measured as well as the tissue being considered, because its action is regulated not only by changes in its concentration but also through changes in the sensitivity of target tissues to

hormone action (Kahn 1985). Insulin resistance has been defined as a state (of a cell, tissue, or organism) in which a greater than normal amount of insulin is required to elicit the appropriate response (Mantzoros 1995). Increased insulin secretion by  $\beta$ -cells is the normal response and compensatory hyperinsulinemia follows. As long as hyperinsulinemia overcomes insulin resistance, glucose levels remain normal; if β-cells compensatory response declines; relative or absolute insulin insufficiency develops, with metabolic consequences, i.e., IGT and DM2. The WHO describes insulin resistance as a glucose uptake below the lowest quartile under hyperinsulinemic euglycemic conditions for the background population. Reaven originally identified 25% of the general population as insulin resistant (World Health Organization (WHO) Expert Committee on Diabetes Mellitus Second Report 1980).

Although several tests exist to assess insulin resistance, the availability of new markers is highly needed in the aim to achieve a more reliable assessment of insulin metabolism. To date, a number of new proteins have been proposed as surrogate markers for the assessment of insulin resistance.

The present study will be carried out to assess the association between adipokines, insulin resistance and obesity in women with PCOS, and its clinical significance.