Evaluation of the effect of febuxostat on endothelial dysfunction in hemodialysis patients

A thesis submitted for the fulfillment of Master's degree in Pharmaceutical Sciences (Clinical Pharmacy)

By

Mona Al-Shahawey Al-Sayed Ghazy

Bachelor of pharmaceutical sciences and drug design
Demonstrator of Clinical Pharmacy
Faculty of Pharmacy
Ain Shams University

Under supervision of

Prof. Dr. Nagwa Ali Sabri

Professor and Head of Clinical Pharmacy Department Faculty of Pharmacy Ain Shams University

Dr. Tamer Wahid Elsaid

Associate Professor of Internal Medicine
Nephrology Department
Faculty of Medicine
Ain Shams University

Dr.Sara Mahmoud Shahin

Lecturer of Clinical Pharmacy Faculty of Pharmacy Ain Shams University

> Faculty of Pharmacy Ain Shams University 2017

Acknowledgment

I wholeheartedly thank **Allah** for giving me the vision, power and endurance to complete this research.

I would like to express my profound gratitude and appreciation to my supervisor **Prof. Dr/ Nagwa Ali Sabri** - Professor of clinical pharmacy and head of clinical pharmacy department, faculty of pharmacy, Ain Shams University-for her continuous support, sincere help, patience, knowledge and valuable comments.

I am deeply grateful to my enlightened mentor **Dr/Tamer Wahid Elsaid** -Associate professor of Nephrology, faculty of medicine, Ain Shams University- for offering me the opportunity to work under his kind supervision. He supported me a lot during this thesis, he actually taught me how to be a good researcher.

I am greatly indebted to **Dr.Sara Mahmoud Shahin** - lecturer of clinical pharmacy, faculty of Pharmacy, Ain Shams University- for her kind help, continuous motivation and her close supervision. She spared no effort or time throughout this research.

THANK YOU for all my Caring Colleagues in clinical pharmacy department, I am learning from you all the time.

Many special thanks and deep gratitude to **My Family** whom I am greatly indebted for their love and spiritual support, not throughout this work only but also throughout my whole life.

Dedication

I dedicate this thesis to the memory of my FATHER, whom I miss every day, and who would have been happy to see me follow in his steps, may Allah bless his soul.

List of Contents

5
8
9
11
12
22
30
37
42
44
57
75
83
89
89
90
108
122

List of abbreviations

ACCP	American College of Clinical Pharmacy
ADE	Adverse drug events
ADMA	Asymmetric Dimethylarginine
AKI	Acute Kidney Injury
ANCOVA	Analysis of Covariance
ARIC	Atherosclerosis Risk in Communities
CBC	Complete Blood Count
CKD	Chronic Kidney Disease
CRP	C-Reactive Protein
CVD	Cardiovascular Disease
DDAH	Dimethylargnine Dimethyl Aminohydrolase
ELISA	Enzyme Linked Immunosorbent Assay
ESRD	End Stage Renal Disease
FMD	Flow mediated dilatation
GFR	Glomerular filtration rate
HsCRP	High Sensitivity C-reactive Protein
KDIGO	Kidney Disease Improving Global Outcome
MDRD	Modification of Diet for Renal Disease
MRI	Magnetic resonance imaging
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NOS	Nitric-oxide synthase
PAT	Pulse amplitude tonometry
PBS	Phosphate Buffered Saline
PCA	Pulse contour analysis
pmp	Patient per million
PWA	Pulse wave analysis
ROS	Reactive oxygen species

RRT	Renal Replacement Therapy
SPSS	Statistical package for social science
TBS	Tris Buffered Saline
TMB	Tetramethylbenzidine
TRP	Treatment related problems
UA	Uric acid
XD	Xanthine Dehydrogenase
XO	Xanthine oxidase

líst of tables

-
Table 1: CKD classification based on GFR and Albuminuria 13
Table 2: Etiology of Chronic Kidney Disease in Egypt
Table 3:Chronic Kidney Disease risk factors
Table 4: Demographic assessment of the study groups. 61
Table 5:Etiology of chronic kidney disease in the two study groups62
Table 6:Antihypertensive medications in the two study groups. 63
Table 7:Assessment of baseline routine parameters in the two study groups64
Table 8:Assessment of target baseline parameters in the two study groups65
Table 9:Serum ADMA and serum HsCRP in Drug group and Placebo group
compared to Control group66
Table 10:Multiple pair-wise comparisons of serum ADMA in study groups67
Table 11:Multiple pair-wise comparisons of serum HsCRP in study groups68
Table 12:After treatment efficacy parameters in the two study groups73
Table 13:After treatment Safety parameters in the two study groups74

List of Figures		
Figure 1: Guide to frequency of monitoring by GFR and albuminuria	_	
Figure 2:Nitric oxide role in vascular hemostasis.		
3		
Figure 3:Blood vessel and endothelial cells.		
Figure 4: Schematic overview of the relationship between ADMA level.		
nitric oxide production	24	
Figure 5:Potential pathways of the interaction between ADMA and NO	DS. 25	
Figure 6:Oxidative stress resulting in endothelial dysfunction	26	
Figure 7:Xanthine oxidase mechanism of action	29	
Figure 8: 2-(3-cyano-4-isobutoxyphenyl)-4-methyl-1,3-thiazole-5-carbo	oxylic	
acid.	30	
Figure 9:The mechanism of xanthine oxidase enzyme	33	
Figure 10:Febuxostat mechanism of action.	33	
Figure 11:Schematic presentation of the study design and patient alloc	ation. 45	
Figure 12:Schematic diagram of human ADMA elisa kit procedure	51	
Figure 13:ADMA eliasa kit reference curve.	53	
Figure 14:HsCRP elisa kit reference curve.	55	
Figure 15:Flow diagram representing the enrollment, the allocation, the	re follow-	
up and the analysis processes	58	
Figure 16:Bseline serum ADMA in drug group and placebo group com	pared to	
control group.	69	
Figure 17: Baseline serum HsCRP in drug group and placebo group of		
to control group.	69	
Figure 18:Serum ADMA level in drug group before and after drug		
administration	71	
Figure 19:Serum uric acid level in drug group before and after drug		
administration	71	
Figure 20:Serum HsCRP level in drug group before and after drug		
administration	71	

Abstract

Abstract

Background:

Endothelial dysfunction is an important risk factor for developing cardiovascular diseases in End Stage Renal Disease (ESRD) patients. Febuxostat; being a novel xanthine oxidase inhibitor, is apparently having a beneficial role in improving endothelial dysfunction, however, data among hemodialysis patients is still limited.

Methods:

A prospective, placebo controlled, block randomized double blinded study was carried out to evaluate the effect of oral febuxostat on endothelial dysfunction in hemodialysis patients. Fifty-seven eligible hemodialysis patients were randomly assigned to either drug group (40 mg thrice weekly) or placebo group. Serum Asymmetric dimethylarginine (ADMA), serum uric acid (UA) and serum high sensitivity C-reactive protein (HsCRP) were measured at baseline and at the end of a two months study. Serum Alanine Aminotransferase (ALT), serum Aspartate Aminotransferase (AST) and occurrence of pancytopenia were tested as safety parameters at baseline and at the end of study.

Results:

Serum UA significantly decreased from 7.5 \pm 0.8 mg/dL to 5.1 \pm 1.2 mg/dL in Febuxostat group while it didn't change significantly in placebo group. Treatment with Febuxostat resulted in a significant decrease in serum ADMA level from (1.027 \pm 0.116 µmol/L to 0.944 \pm 0.104 µmol/L) and serum HsCRP level from (12.5 \pm 1.65 mg/L to 12.1 \pm 1.70 mg/L). Testing of serum ALT, serum AST and pancytopenia revealed no significant difference in both groups.

Conclusion:

Febuxostat appears to improve hyperuricemia, endothelial dysfunction and ameliorate inflammation in hemodialysis patients with no safety concerns.

Key words:

Hemodialysis, Febuxostat, Endothelial dysfunction, Asymmetric dimethylarginine, Hyperuricemia, Inflammation.

Review of Literature

Renal Failure

Renal failure can be classified into acute kidney injury and chronic kidney disease. While disease progression is fast in acute kidney injury, gradual deterioration (in the range of years) of the kidneys occurs in Chronic Kidney Disease (CKD) (Chawla et al., 2014).

Total loss of kidney functions can occur from both chronic and acute kidney disease. It then consequences to total or partial dependence on renal replacement therapy, either dialysis with its two types; hemodialysis and peritoneal dialysis, or kidney transplantation (**Tammen et al., 2014**).

Acute Kidney Injury (AKI):

It is a syndrome that characterized by the rapid loss of the kidney's excretory function. It is typically diagnosed by the accumulation of end products of nitrogen metabolism (urea and creatinine) or decreased urine output, or both (**Bellomo et al., 2012**). The most popular definition for AKI is the elevation of creatinine of ≥ 0.3 mg/dl within 48 hours, or $\geq 50\%$ above baseline within 7 days (**Khwaja, 2012**).

Chronic Kidney Disease (CKD):

It's a life-threatening condition with progressive and irreversible loss of kidney function (**Gansevoort et al., 2013**). It's defined by the international guidelines as decreased kidney function shown by glomerular filtration rate (GFR) of less than 60 mL/min per 1.73 m², or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause (**Webster et al., 2016**).

I. Criteria for the definition of CKD by Kidney Disease Improving Global Outcome (KDIGO): (Andrassy, 2013; Kasiske & Wheeler, 2013)

One or more markers of kidney damage:

- Albuminuria (Albumin excretion rate more than/equal 30mg/24 hours; albumin to create ratio more than/equal 3mg/mmol)
- Urine sediments abnormalities
- Histology abnormalities.

- Tubular disorders and electrolyte abnormalities.
- Imaging structural detected abnormalities.
- Kidney Transplantation History.
- Decreased GFR < 60ml/min/1.73m².

II. Staging of chronic kidney disease: (Kasiske & Wheeler, 2013)

Staging of CKD in Kidney Disease Improving Global Outcome (KDIGO) is based on either GFR or Albuminuria:

Table 1: CKD classification based on GFR and Albuminuria

GFR categories						
Category	GFR	Description				
G1	90	Normal or increased				
G2	60-89	Mildly decreased				
G3a	45-59	Mildly to moderately decreased				
G3b	30-44	Moderately to severely decreased				
G4	15-29	Severely decreased				
G5	<15	Renal Failure				
Albuminuria categories						
Category A/C ratio Do		Description				
A1	<30	Normal to mildly increased				
A2	30-300	Moderately increased				
A3	>300	Highly increased				

Abbreviations: GFR: Glomerular Filtration Rate, A/C ratio: Albumin to Creatinine ratio.

CKD Classification and Staging Green: Low risk (LR)			Kidney damage stage Urine albumin/creatinine ratio Description and range			
Yellow: Moderate risk (MR)			A1	A2	A 3	
Orange: High risk (HR) Red: Very high risk (VHR)			Normal to mild increase <30mg/g	Moderate increase 30-300 mg/g	Severe increase >300 mg/g	
Kidney function stage GFR (ml/min/1.73m²) Description and range	G1	Normal or high	≥90	LR	MR	HR
	G2	Mild decrease	60-89	LR	MR	HR
	G3a	Mild to moderate decrease	45-59	MR	HR	VHR
	G3b	Moderate to severe decrease	30-44	HR	VHR	VHR
	G4	Severe decrease	15-29	VHR	VHR	VHR
102	G5	Kidney failure	< 15	VHR	VHR	VHR

Figure 1: Guide to frequency of monitoring by GFR and albuminuria categories.

III. Epidemiology of CKD:

Chronic kidney disease is a worldwide problem which overburdens healthcare systems and governments. It eventually leads to millions of deaths and years lived with disabilities and poor quality of life. It's found that 3,200,000 patients reach End Stage Renal Disease (ESRD) without even starting Renal Replacement Therapy (RRT) each year, while only 440,000 patients do initiate RRT (Anand et al., 2013). CKD is one of the three causes of death with the greatest increase from 1990 to 2010 among the top 20 killers (Lozano et al., 2013).

Worldwide, the prevalence of ESRD differs greatly. According the United States Renal Data System, the highest prevalence was found in Taiwan, with 2447 patients per million (pmp), and the lowest prevalence was in Philippines, at 110 pmp (**Afifi, 2008**).

The incidence of CKD is at least three to four times more frequent in Africa than in developed countries, but the prevalence of ESRD is relatively lower, which reflects the lack of medical care facilities and health-care systems (Naicker, 2009).

<u>In Egypt</u>, there are no recent data about the prevalence of ESRD; however, the last statistics that was performed showed an increase from 225 pmp in 1996 to 483 pmp in 2004 (**El Minshawy**, 2011; **Ghonemy et al.**, 2016). The estimated annual incidence of ESRD is around 74 per million and the total prevalence of patients on dialysis is 264 per million (**El-Arbagy et al.**, 2016).

According to an epidemiological study of ESRD in <u>El-Menia Governorate</u> 2011, the prevalence was 308 pmp. Patients' mean age was 46 ± 13 years with 65% males 65% and 35% females. The etiology of the CKD in the study showed 20% due to hypertension, 12% due to obstructive abnormalities, 11% due to chronic glomerulonephritis, 8% due to diabetic nephropathy, 5% chronic pyelonephritis 3% due to bilharziasis, 9% due to other causes while 20% with unknown cause (**El Minshawy, 2011**).

Menoufia governorate presented with an ESRD prevalence rate of 330 pmp in 2011. Patients' mean age was 52.45 ± 14.12 years with 52.4% males and 47.6 females. Hypertension was the prevalent cause of ESRD in this study with 31.1% and diabetic nephropathy with 15.9%, while the unknown causes represented 20.5% of the cases (**Zahran, 2011**).

The prevalence rate of ESRD in <u>Assiut governorate</u> in 2014 was 366 pmp. Patients' mean age was 44.5 ± 12.3 years, with 65.7% males and 34.3 females. The etiology of ESRD was unknown in 25% of cases, whereas hypertension was responsible in 21.4% of cases, obstructive uropathy in 11% of cases, chronic glomerulonephritis in 8% of cases, analgesic nephropathy in 3% of cases, chronic pyelonephritis in 8.9% of cases, diabetic nephropathy in 14.9% of cases, toxemia of pregnancy in 2% of cases, and polycystic kidney disease in 0.7% of cases (**El-Arbagy et al., 2016**).

Latest in <u>Kafr El-Sheikh governorate</u>, 282.6 pmp was the prevalence of ESRD in 2015. Patients' mean age was 51.34 ± 13.5 years with 60.7% males patients while 39.3% females. The main known causes of the ESRD in those patients was hypertension with 34%, diabetic nephropathy 14% while 25.3% of patients with unknown cause (**Ahmed et al., 2015**).

In an ESRD retrospective 5-years epidemiological study at Ain Shams University Hospital, incidence rate of dialysis raised from 257 to 381 patients/year in a period from 2005 to 2009. Patients' mean age was raised from 51.7 ± 15.6 years in 2005 to 53 ± 15.7 years in 2009. Regarding the co-morbid conditions found, 54.7% of the cases was hypertensives, 34.3% were diabetics while 7.9% and 3.4% had chronic