RHEOLOGICAL STUDY ON ICE CREAM

By

YASSER FAROUK HASSAN ABD EL-GHANY

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 1993 M.Sc. Agric. Sci. (Dairy Science), Fac. Agric., El-Azhar Univ., 2002

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Dairy Science)

Department of Dairy Science Faculty of Agriculture Cairo University EGYPT

2016

APPROVAL SHEET

RHEOLOGICAL STUDY ON ICE CREAM

Ph.D. Thesis In Agric. Sci. (Dairy Science)

By

YASSER FAROUK HASSAN ABD EL-GHANY

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 1993 M.Sc. Agric. Sci. (Dairy Science), Fac. Agric., El-Azhar Univ., 2002

APPROVAL COMMITTEE

DR. REZK AZAB AWAD
Professor of Dairy Science, Fac. Agric., Ain Shams University
DR. MOHAMED AHMED ABD EL-KHALEK AZZAM
Professor of Dairy Science, Fac. Agric., Cairo University
DR. MONIER MAHMOUD IBRAHIM EL-ABD
Professor of Dairy Science, Fac. Agric., Cairo University
DR. HODA MAHMOUD MOHAMED EL-ZEINI
Professor of Dairy Science, Fac. Agric., Cairo University

Date: / /

SUPERVISION SHEET

RHEOLOGICAL STUDY ON ICE CREAM

Ph.D. Thesis In Agric. Sci. (Dairy Science)

By

YASSER FAROUK HASSAN ABD EL-GHANY

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 1993 M.Sc. Agric. Sci. (Dairy Science), Fac. Agric., El-Azhar Univ., 2002

SUPERVISION COMMITTEE

DR. HODA MAHMOUD MOHAMED EL-ZEINI

Professor of Dairy Science, Fac. Agric., Cairo University

DR. MONIER MAHMOUD IBRAHIM EL-ABD

Professor of Dairy Science, Fac. Agric., Cairo University

DR. MOSTAFA ABD EL-MONEAM ZEDAN

Professor of Dairy Science, Food Technology Institute, Agricultural Research Center. Ministry of Agriculture Name of Candidate: Yasser Farouk Hassan Abd El-Ghany Degree: Ph.D.

Title of Thesis: Rheological study on ice cream

Supervisors: Dr. Hoda Mahmoud Mohamed El-Zeini

> Dr. Monier Mahmoud Ibrahim El-Abd Dr. Mostafa Abd El-Moneam Zedan

Department: Dairy Science **Branch:**

Approval: 12 /5/ 2016

ABSTRACT

This work was implemented to study the effect of whey protein concentrate (WPC), whey protein isolate (WPI) and glycomacropeptide (GMP) as a partial substitution of milk solids not fat (MSNF) in ice cream formula by 1, 2, 3 and 4% of (MSNF). Mixes and resultant ice cream samples were analyzed for their chemical, physicochemical and rheological properties as well as the sensory quality attributes. There was no remarkable effect of adding whey proteins as partial substitution of MSNF on total solids or fat percentages, while total protein, ash, and lactose content were significantly affected. Specific gravity was significantly affected with the ratio of substitution in both mixes and resultant ice cream and therefore the weight per gallon and overrun percent were significantly changed in the samples. Apparent viscosity as well as flow time of mixes were significantly increased. Flow behavior was also affected showing higher yield stress. Increasing WPC, WPI and GMP in ice cream mixes resulted in a building up of structure leading to increase in the sample viscosity. The shear stress increased significantly with increasing the substitution ratio. Also, flow behavior index (n) decreased by increasing the substitution levels of whey proteins. The consistency coefficient (k) was more affected by the presence of whey proteins in the recipe than the flow behavior index. Herschel-Bulkley behavior (building up of structure and increasing of sample viscosity) was observed in ice cream mix by increasing the substitution levels of whey proteins. Back-extrusion results represented a decrease in hardness values of resultant ice cream, while, during storage, there was a slight increase. Energy input values decreased by increasing substitution levels of whey proteins. During storage, there was a low significant increase of energy input values. The energy output negatively correlated with substitution levels of whey proteins and positively with storage period indicating a strong structure for stored ice cream. Load at target deformation (50%) applied to the samples showing decreased values proportional to increasing substitution levels of whey proteins in ice cream samples when fresh and after 14 days storage. The resilience showed decreased ratio indicating more visco-elastic properties in fresh ice cream. The recovered height and deformation increased with increasing substitution levels of whey proteins and storage period. Therefore, more sticking properties were obtained in resultant ice cream. Adhesive force decreased significantly with increasing substitution levels of whey proteins and storage period. Adhesiveness values were significantly higher in all treatments than control and increased gradually during storage. Key words: whey protein concentrate, whey protein isolate, glycomacropeptide,

rheological properties, Ice cream, texture profile analysis, Back extrusion.

ACKNOWLEDGEMENT

Deepest, greatest and sincere thanks to ALLAH the most Merciful, Great and Clement God.

I gratefully wish to express my deepest gratitude and infinite thanks to my supervisor **Prof. Dr. Hoda Mahmoud El-Zeini** Professor of Dairy Science, faculty of agriculture, Cairo University. I would like to thank her for her great supervision, highly kindness, guidance as well as help writing of the manuscript of this work and her effort in statistical analysis and help in the rheological measurement, which exceptionally inspired and enriched my growth as a researcher.

I would like to express my second thanks to **Prof. Dr.**Monier Mahmoud Ibrahim El-Abd Professor of Dairy science,

Faculty of Agriculture, Cairo University, for his supervision, and

guidance through the course of study which give the work great

value.

My deep appreciation for **Prof. Dr. Abdel-Rahman Abdel-Atti Ali**, Professor of Dairy science, Faculty of Agriculture, Cairo University, for his help in writing the manuscript and guidance throughout the course of study.

I would like also to express my gratitude and appreciation to **Prof. Dr. Moustafa Abd El-Moneam Zedan** professor of Dairy science, Food Technology Institute, Agricultural Research Center, Ministry of Agriculture, for his help offering facilities to accomplish lab. work.

Sincere thanks goes to Dr. **Rezk Azab Awad** Professors of Dairy Science, Faculty of Agriculture, Ain Shams University, for his help at the early stage of the lab work and continuous assistance throughout the investigation. He taught me several things which I never have the opportunity to learn. It is too difficult for me to express my deep respect to him.

Thanks also to everybody who provided, help or advice to achieve this manuscript.

LIST OF ABBREVIATIONS

" Inch % percent & And

< Less than
± Plus or minus
® Trademark

AOAC Association of Official Analytical Chemists

C Celsius

CMC Carboxymethyl Cellulose

Co. Company

CSS Corn Syrup Solids

CV Coefficient of Variation
DE Dextrose Equivalent
DF Degree of freedom

e.g. For example

FAO Food and Agriculture Organization

Fig. Figure

FP Freezing point

g gram

gal (1 U.S. gallon = 3.785 litre, 1 U.K. gallon=4.546 litre)

HTST High temperature short time

J Joule

K Consistency index

kDa Kilo Dalton kg Kilogram

lbf Pound force; (1lbf = 4.448N = 0.4536 kgf)

LSD Least significant differences

mEq Millie equivalent

min Minute
mJ Milli joule
ml Milliliter
mm Millimeter

MPC Milk protein concentrate

MS Mean Square
MSNF Milk solid not fat
MW Molecular weight
n Shear rate index

N Newton; (1 N = 0.225 lbf)

Na⁺ Sodium cation nm Nano meter o Degree P page

p.p.m Part per million
PI Protein isolate
pI Isoelectric point
Prob. Probability

qt Quart

r Regression coefficient r.p.m Round per minute

R² Multiple R sec. Second

Sp.gr Specific gravity
TA Titratable acidity
TC Total calcium
temp. Temperature

T_f Freezing point temperature

TP Total protein

TPA Texture Profile Analysis

TS Total solids
UF Ultra filtration
UV Ultra violet
v volume
wk week

WPC Whey protein concentrate
WPI Whey protein isolate
wt/wt Weight by weight

 $\begin{array}{ll} \alpha & & Alpha \\ \beta & & Beta \end{array}$

 γ (Gamma) Shear rate η_a (Eta) apparent viscosity

 $\begin{array}{lll} \kappa\text{-casein} & \text{Kapa casein} \\ \mu g & \text{Microgram} \\ \sigma & \text{Shear stress} \end{array}$

CONTENTS

	RODUCTIONVIEW OF LITERATURE
	acteristics of ice cream containing whey proteins
1. Ice	e cream and frozen dessert background and definitions
a.	Sherbet
b.	Frozen yogurt
c.	Quiescently frozen dairy confections
d.	Mellorine
e.	Reduced fat
f.	Light or Lite
g.	Low fat ice cream
h.	Nonfat ice creams
	cream composition
3. Ice	e cream ingredients
a.	Stabilizers
b.	Emulsifiers
c.	Sweetners
d.	Proteins
(1)	Sources of bioactive milk proteins
(2)	Characteristics of whey proteins in food products
(3)	Structure and biological functions of whey
	Composition and biological functions of whey
(4)	proteins
(5)	Whey proteins as essential food ingredients
(a	Structures of whey proteins
(b	Types and composition of whey protein based products
(c	Whey protein concentrate (WPC)
(d	Whey protein isolate (WPI)
(e	Milk protein concentrate (MPC)

	(f	Glycomacropeptide (GMP).
	(g	Whey protein hydrolysate (WPH)
	(6	Functionality of WP and health benefits (whey-an emerging protein for improving body composition)
	(7)	Whey: biochemically tailored to preserve muscle
		Whey and satiety
	({	Why whey protein?
	(a)	Aging
	(ł	Weight loss
		Bone health
	((Good source of biologically active proteins and peptides
	(€	Whey and cardiovascular health
		Maturation
	(-	Functional properties of whey proteins and whey protein based products
	(10	The application of whey proteins and whey protein
1	Too.	products in frozen desert
4.	a.	Pagulatory limitations
	b.	Regulatory limitations
5.		A range of functional ingredients Inctional benefits of whey in ice cream
٥.	a.	Water Binding
	b.	Whipping/Foaming
	c.	Emulsification
	d.	Flavor
	e.	Viscosity
	f.	Visual appeal
	g.	Bulking agent
	h.	Freezing point management
	i.	Impact on added flavors
	j.	Cost-Effectiveness
	k.	Nutrition
6.	Rhe	ological properties of ice cream
	a.	Rheological and textural properties measurements

b.	Empirical methods
MAT	ERIALS AND METHODS
1. M	ATERIALS
a.	Fresh skim milk and concentrated cream
b.	Skim milk powder (SMP)
c.	Whey protein concentrate (WPC), Whey protein isolate (WPI) and Glycomacropeptide (GMP)
d.	Sugar
e.	Stabilizer
2. M	ETHODS
a.	Method of ice cream preparation
3. C	hemical analyses of ice cream mixes
a.	Titratable acidity
b.	Total solids
c.	Ash content
d.	Lactose content
e.	Fat content
f.	Total protein content
4. Pl	ysicochemical analyses of ice cream mixes
a.	pH values
b.	Specific gravity
c.	Weight per gallon
d.	Freezing point
e.	Melting resistance of resultant ice cream
f.	Calculation of the overrun
5. R	heological properties of ice cream
a.	Ice cream mix
	Measurement of consistency
(2)	Viscosity
b	Ice cream
(1)	Texture profile analysis (TPA)
(2)	Back Extrusion

. Se	nsory evaluation	1	 	
	atistical analysis			
	JLTS AND DIS			
	TION I			
	Manufacture			e
. Pro	operties of ice cr			
/d\	Chemical compo			
	Total solid conte			
	Fat content			
	Total protein			
	Ash content			
	Lactose content			
b.	Physiochemical Titratable acidity			
	Titratable acidity Specific gravity	_		
	Freezing point (
	Consistency			
	Apparent viscos			
c.	Rheological proj	•		
	Flow behavior M	-		
	Yield stress valu			
	Herschel-Bulkle			
	Apparent viscos	-		
	perties of the res	-		
a.				
(1)	Specific gravity			
(2)	Overrun		 	
(3)	Melting resistan			
b.	Texture profile a			
(1)	Hardness		 	
(2)	Adhesiveness	• • • • • • • • • • • • • • • • • • • •	 	
(3)	Cohesiveness		 	

	(4)	Hesion
	(5)	Springiness
	(6)	Gumminess
	(7)	Chewiness
	c.	Back extrusion
	(1)	Hardness
	(2)	Position of hardness
	(3)	Energy input and output
	(4)	The load at target
	(5)	Resilience
	(6)	Recovered height
	(7)	Stringiness
	(8)	Best Fit
	(9)	Modulus slop
	(10	Adhesive force
	(11	Adhesiveness
	(12	Start of adhesiveness
	(13	Displacement at adhesive force
	(14	End of adhesiveness
	(15	Mm to break adhesive contact
4.	Sei	nsory evaluation
Sl	ECT	TION II
1.	Ma	nufacture of ice cream containing WPI
2	Pro	perties of ice cream mixes
	a.	Chemical composition of ice cream mixes
	(1)	Total solid content
	(2)	Fat content
		Total protein
	(4)	Ash content
	(5)	Lactose content
	b.	Physiochemical properties
	(1)	Titratable acidity and pH values

	(2)	Specific gravity and weight/gallon
	(3)	Freezing point (°C)
	(4)	Consistency
	(5)	Apparent viscosity
	c.	Rheological properties
	(1)	Flow behavior Model
	(2)	Yield stress values
	(3)	Herschel-Bulkley equation
	(4)	Apparent viscosity
3.	Pro	operties of the resultant ice cream
	a.	Physical properties of ice cream
	(1)	Specific gravity
	(2)	Overrun
	(3)	Melting resistance
	b.	Texture profile analysis (TPA)
	(1)	Hardness
	(2)	Adhesiveness
	(3)	Cohesiveness
	(4)	Hesion
	(5)	Springiness
	(6)	Gumminess
	(7)	Chewiness
	c.	Back extrusion
	(1)	Hardness
	(2)	Position of hardness
	(3)	Energy input and output
	(4)	The load at target
		Resilience
	(6)	Recovered height
	(7)	Stringiness
	(8)	Best Fit
	(9)	Modulus slop

	(10	Adhesive force
	(11	Adhesiveness
	(12	Start of adhesiveness
	(13	Displacement at adhesive force
	(14	End of adhesiveness
	(15	Mm to break adhesive contact
4.	Sei	nsory evaluation
Sl	ECT	TION III
1.	Mar	ufacture of ice cream containing GMP
2	Pro	perties of ice cream mixes
	a.	Chemical composition of ice cream mixes
	(1)	Total solid content
	(2)	Fat content
	(3)	Total protein
	(4)	Ash content
	(5)	Lactose content
	b.	Physiochemical properties
	(1)	Titratable acidity and pH values
		Specific gravity and weight/gallon
	(3)	Freezing point (°C)
	(4)	Consistency
	(5)	Apparent viscosity
	c.	Rheological properties
	` /	Flow behavior Model
	(2)	Yield stress values
		Herschel-Bulkley equation
	(4)	Apparent viscosity
3.	Pro	perties of the resultant ice cream
	a.	Physical properties of ice cream
	(1)	Specific gravity
		Overrun
	(3)	Melting resistance