Primary PCI versus Early Routine Post Fibrinolysis PCI for ST Elevation Myocardial Infarction

Thesis Submitted for Partial Fulfillment of MD Degree in Cardiology

Submitted by

Ayman Mohamed Ahmed Fkirin Helal M.B.B.CH, MSc Cardiology

Supervised By:

Doctor\ Sameh Mohamed Mamoun Shaheen

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Doctor\ Walid Abdel-Azim Mohamed Elhammady

Professor of Cardiology Faculty of Medicine – Ain Shams University

Doctor\ Mohamed Ismail Ahmed Ismail

Professor of Cardiology Faculty of Medicine – Ain Shams University

Doctor\ Ahmed Samir Abdel-Hakim Ibrahim

Professor of Diagnostic Radiology Faculty of Medicine – Ain Shams University

Doctor\ Lamyaa Elsayed Allam Elsayed

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2016

Primary PCI versus Early Routine Post Fibrinolysis PCI for ST Elevation Myocardial Infarction

Abstract

Background- Pharmaco-invasive strategy performed between 3 and 24 hours appears beneficial and safe. The rationale for following fibrinolysis with PCI is that many patients have a persistent reduction in flow in the infarct-related artery. The aim of the present study is to assess the effect of immediate fibrinolysis (with streptokinase "The widely available fibrinolytic in Egypt") in patients presented with acute STEMI followed by transferal and PCI within 3-24 hours compared to primary PCI and ischemia driven PCI on infarction size and microvascular obstruction.

Methods and Results- Sixty patients with first attack of acute STEMI within 12h were enrolled in this randomized multi-centers case-control study. The patients were randomized to 4 groups (15 patients each): primary PCI for patients presented to PPCI-capable centers (group I), transfer to PCI if presented to non-PCI capable center (group II), pharmaco-invasive strategy (group III) and fibrinolytic (streptokinase) and ischemia driven PCI (group IV). The primary endpoint is the infarct size assessed by cardiac MRI 3-5 days post MI. Death, reinfarction or disabling stroke were constitute the clinical (secondary) endpoints. The key safety (secondary) endpoint was be the incidence of major bleeding. The estimated patient delay was 6.1+2.5 hours with non-significant differences in the 4 groups. The system delay was 57+56, min in group I, 175.7±29 min in group II, 40.7±8.6 min in group III and IV. There was significantly larger infarction size in group IV compared to group I (49770+68449 vs. 28391+30322 mm³, P=0.03), group II (49770+68449 vs. 28553+20006 mm³, P=0.03) and group III (49770+68449 vs. 27580+20945 mm³, P=0.02). But minor bleeding was significantly higher in group III compared to other groups due to puncture site related bleeding (33% of patients in group III vs. 13% in group IV vs. 0% in group I and II, P=0.006).

Conclusions- Compared to fibrinolysis followed by ischemia guided intervention, pharmaco-invasive strategy using streptokinase with PCI within 3-24 hours resulted in effective reperfusion and smaller infarction size in patients with acute STEMI. However, pharmaco-invasive strategy was associated with a slightly increased risk of minor bleeding.

Key words: pharmaco-invasive strategy, primary PCI, myocardial infarction, infarction size, cardiac MRI.

ACKNOWLEDGEMENT

First of all I would like to thank **Allah**, the most merciful and the most graceful for blessing this work until it has reached its end, as a part of his generous help throughout my life.

There is no such a thing that can gratify the help of **Professor Doctor\ Sameh Mohamed Mamoun Shaheen**, Professor of Cardiology, Faculty of Medicine, Ain-Shams University, for his kind supervision, support and guidance throughout this study. He was so kind and cooperative, gave me valuable assistance and meticulous supervision.

I would like to thank **Professor Doctor \ Walid Abdel-Azim Mohamed Elhammady**, Professor of Cardiology, Faculty of Medicine, Ain-Shams University. He gave me great support during preparation of this work both scientifically and emotionally.

I would like also to express my thanks to **Professor Doctor \ Mohamed Ismail Ahmed Ismail**, Professor of Cardiology, Faculty of Medicine, Ain-Shams University, for his generous help and sincere advices through this work.

I would like to thank **Professor Doctor \ Ahmed Samir Abdel-Hakim Ibrahim**, Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University. He was so kind with me and supported me too much for completing this work.

I am very grateful to **Doctor\ Lamyaa Elsayed Allam Elsayed**, Lecturer of Cardiology, Faculty of Medicine, Ain-Shams University, for her great help and scientific advice during the preparation of the present work.

I would like also to thank staff members of Cardiology department, Ain-Shams University for their great help during my achievement of master and MD degree.

SPECIAL THANKS

I would like to record my thanks and sincere gratitude to my family for their great help and support throughout the work. I wish to express my greatest and profound gratitude to my parents, brothers and sister for their support. Also a great thanks to my father-in-law and mother-in-law for their great support.

Last but not least, I would like to thank my wife and my children who always supports me and stays hand by hand with me.

TABLE OF CONTENTS

List of Tables	
List of Figures	
List of Abbreviations	VII
Introduction	1
Aim of Work	3
 Review of Literature ♣ Chapter 1: Reperfusion Strategies in Treatment of ST Elevation Myocardial Infarction ♣ Chapter 3: Referral Network Logistics for Improving Reperfusion Success Rate ♣ Chapter 2: Assessment of Infarction Size 	5 30 59
Patients and Methods	73
Results	85
Discussion	109
Summary	121
Conclusions and Recommendations	123
References	125
Appendix: Master Sheet	153
Arabic Summary	156

LIST OF TABLES

	Description	Page
Table 1	Primary PCI: indications and procedural aspects	10
Table 2	Primary PCI strategies and techniques	11
Table 3	Fibinolytic Agents and their doses	17
Table 4	Recommendations for fibrinolytic therapy	18
Table 5	Contraindications of fibrinolyic therapy	19
Table 6	Management after fibrinolytic Therapy	22
Table 7	Short and long terms policy for STEMI network	49
Table 8	Comparison between SPECT and MRI in infarction size assessment	63
Table 9	Age distribution among the study groups	86
Table 10	Risk factors distribution among the study groups	87
Table 11	On-admission vital signs among the study population	88
Table 12	KILLIP classification among the study population	89
Table 13	ECG character of STEMI	90
Table 14	Time delays within the study groups	92
Table 15	Pre- and post-PCI TIMI flow and MBG	93
Table 16	Thrombus grade distribution	94
Table 17	Stents diameter, length and inflation pressure	94
Table 18	Need for pre-dilatation, thrombus aspiration and GP IIb/IIIa inhibitors among the study groups	95
Table 19	Differences in ST segments among the study groups	96
Table 20	Differences in cardiac biomarkers among the study groups	97
Table 21	Calculated infarction size and MVO by cardiac MRI	98
Table 22	Estimated ejection fraction by echocardiography and MRI	98
Table 23	Distribution of MACCE among the study groups	99
Table 24	Incidence of minor bleeding during the study	100
Table 25	Master Sheet	153

LIST OF FIGURES

	Description	Page
Figure 1	Selection of reperfusion strategy in patients presented with STEMI	5
Figure 2	Components of delay in STEMI and ideal time intervals for interventions	7
Figure 3	The different time delays demonstrated for ST elevation myocardial infarction (STEMI) patients	31
Figure 4	Organization of a network components	39
Figure 5	Pre-hospital ECG decrease the reperfusion time goals	44
Figure 6	How to react with emergency vehicle	56
Figure 7	Four patterns of enhancement on late Gd imaging reflecting different grades of infarct severity	68
Figure 8	Distribution of gender among the study groups	85
Figure 9	Risk factors distribution among the study groups	86
Figure 10	KILLIP classification among the study population	88
Figure 11	ECG character of STEMI	89
Figure 12	Culprit artery among study populations	92
Figure 13	Pre- and post-PCI TIMI flow and MBG	93
Figure 14	BMS vs. DES used in the study	95
Figure 15	Differences in cardiac biomarkers among the study groups	96
Figure 16	Calculated infarction size and MVO by cardiac MRI	97
Figure 17	Estimated ejection fraction by echocardiography and MRI	99
Figure 18	Distribution of MACCE among the study groups	100
Figure 19	On-admission ECG of patient number 5 in group II	101
Figure 20	Primary PCI for patient number 5 in group II	102
Figure 21	One hour post-reperfusion ECG of patient number 5 in group II	103
Figure 22	Cardiac MRI of patient number 5 in group II showing area of infarction and MVO	103
Figure 23	On-admission ECG of patient number 1 in group III	104
Figure 24	Primary PCI for patient number 1 in group III	105

List of Figures

Figure 25	One hour post-reperfusion ECG of patient number 1 in group III	105
Figure 26	Cardiac MRI of patient number 1 in group III showing area of infarction and MVO	106
Figure 27	On-admission ECG of patient number 1 in group III	106
Figure 28	Primary PCI for patient number 1 in group III	107
Figure 29	One hour post-reperfusion ECG of patient number 1 in group III	108
Figure 30	Cardiac MRI of patient number 1 in group III showing area of MVO with no area of infarction	108

LIST OF ABBREVIATIONS

D
Four chamber
American college of cardiology
Acute coronary syndrome
Adenosine di phosphate
Automated external defibrillator
American heart association
Advanced life support
Acute myocardial infarction
Activated partial thromboplastin time
Atmospheric pressure
Area under the curve
Balloon inflation
Body mass index
Bare metal stent
Blood pressure
Beat per minute
Coronary artery Bypass Graft
Coronary artery disease
Coronary care unit
Contrast enhanced
Contrast enhanced - inversion recovery
Coronary heart disease
Congestive heart failure
Creatinine kinase
Creatinine kinase – myocardial band
Cardiac magnetic resonance imaging
Cardiopulmonary resuscitation
Door to balloon
Dual antiplatelet therapy
Diastolic blood pressure
Drug eluting stent
Door-in-door-out time
Diabetes mellitus
Electrocardiogram

ED	Emergency department
EgSC	Egyptian society of cardiology
EMS	Emergency medical systems
EMS	Emergency medical service
ESC	European society of cardiology
EWS	Extended work space
FBS	Fasting blood sugar
FH	Family history
FMC	First medical contact
FOV	Field of view
FT	Fibrinolytic therapy
Gd	Gadolinium
GP	Glycoprotein
HDL	High density lipoprotein
HF	Heart failure
HR	Heart rate
HTN	Hypertension
IHD	Ischemic heart disease
IR	Inversion recovery
IRA	Infarct-related artery
JNC	Joint of national committee
JVP	Jugular venous pressure
LAD	Left anterior descending
LBBB	Left bundle branch block
LCX	Left circumflex
LDL	Low density lipoprotein
LGE	Late gadolinium enhancement
LM	Left main
LV	Left ventricle
LVEF	Left ventricular ejection fraction
MACCE	Major adverse cardiac and cerebrovascular event
MBG	Myocardial blush grade
MI	Myocardial infarction
MR	Mitral regurgitation
MRI	Magnetic resonance imaging
MVO	Micro vascular obstruction

List of Abbreviations

NSTEMI	Non ST elevation myocardial infarction
PCI	Percutaneous coronary intervention
PET	Positron emission tomography
PPCI	Primary percutaneous coronary intervention
PTCA	Percutaneous transluminal coronary angioplasty
RCA	Right coronary artery
r-PA	Reteplase tissue plasminogen activator
RR	Respiratory rate
SA	Short axis
SBP	Systolic blood pressure
SFL	Stent for life
SK	Streptokinase
SPECT	Single photon emission computed tomography
SPSS	Statistical Package for Social Sciences
STEMI	ST elevation myocardial infarction
STR	ST-segment resolution
SWMA	Segmental wall motion abnormalities
TC	Total cholesterol
TFG	TIMI flow grade
TG	Triglyceride
TI	Inversion time
TIMI	Thrombolysis in myocardial infarction
TNK-tPA	Tenecteplase tissue plasminogen activator
tPA	Tissue plasminogen activator
UFH	Unfractionated heparin
URL	Upper range limit
VLA	Vertical long-axis
VSR	Ventricular septal rupture

Introduction

Worldwide, coronary artery disease (CAD) is the single most frequent cause of death. Over seven million people every year die from CAD, accounting for 12.8% of all deaths. Every sixth man and every seventh woman in Europe die from myocardial infarction. The in-hospital mortality of STEMI patients in the national registries of the European society of cardiology (ESC) countries varies between 6% and 14% (Steg et al, 2012).

Primary percutaneous coronary intervention (PCI) is an effective treatment for myocardial infarction with ST-segment elevation when it can be performed rapidly. However, primary PCI is performed in less than 25% of acute care hospitals in the United States (*Cantor et al, 2009*). Many patients with myocardial infarction with ST-segment elevation present to hospitals that do not have the capability of performing PCI and therefore cannot undergo PCI within the timelines recommended in the guidelines; instead, they receive fibrinolysis as the initial reperfusion therapy (*Armstrong et al, 2013*).

Despite the effectiveness and worldwide availability of intravenous thrombolysis, the usefulness of this therapy is greatly threatened by a high proportion of failed reperfusion and a substantial rate of reocclusion (Aviles et al, 2004).

Even if it is likely that fibrinolysis is successful, a strategy of routine early angiography is recommended if there are no contraindications. Several randomized trials and three contemporary meta-analyses have shown that early routine post-thrombolysis angiography with subsequent PCI (if required) reduced the rates of reinfarction and recurrent ischaemia compared with a 'watchful waiting' strategy, in which angiography and revascularization were indicated only in patients with spontaneous or induced severe ischaemia or LV dysfunction (*Borgia et al, 2010*).

Thus, early referral for angiography with subsequent PCI (if indicated) should be the standard of care after thrombolysis: the so-called 'pharmaco-invasive' strategy. A crucial issue is the optimal delay between lysis and PCI. There was a wide variation in delay in trials, however a time window of 3–24 h after successful lysis is preferred (*Stone*, *2008*).

Pharmaco-invasive strategy is now considered Class IIa level of evidence A in the recent ESC guidelines for STEMI (*Steg et al, 2012*) and level of evidence B in the recent ACC/AHA guidelines for STEMI (*O'Gara et al, 2013*).

Several variants of tPA (tissue plasminogen activator) have been studied. Double-bolus r-PA (reteplase) does not offer any advantage over accelerated tPA, except for its ease of administration. Single-bolus weight-adjusted TNK-tPA (tenecteplase) is equivalent to accelerated tPA for 30-day mortality and is associated with a significantly lower rate of non-cerebral bleedings and less need for blood transfusion. Bolus fibrinolytic therapy is easier to use in the pre-hospital setting (*Steg et al*, 2012).

Aim of Work

The aim of the study is to assess the effect of fibrinolysis followed by PCI on infarction size and microvascular obstruction in patients presented with acute STEMI.