Detection of Carbapenemases genes responsible for carbapenem resistant in commonest bacteria causing Gestational Pyelonephritis

Thesis

Submitted for partial fulfillment of the master degree of in medical microbiology and immunology

Submitted by

Islam Khaled Ali Harby

M.B.B.Ch Faculty of Medicine Ain Shams University

Supervised by

Prof. Ayman Asaad Ebrahim

Professor of Medical Microbiology and Immunology Faculty of Medicine- Ain Shams University

Ass. Prof. Walaa Abd El-latif Ibrahim

Assistant Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgement

Thanks to Allah for helping me to accomplish this work. Also, thanks to the supervisors who supported me and made the great effort to let this work be in an appropriate form.

Professor Ayman Assad Ibrahem Prof. of Microbiology and Immunology faculty of medicine Ain Shams university.

Ass. Prof. Walaa abd El-Latif Ibrahem assistant Prof. of Microbiology and Immunology faculty of medicine Ain Shams university.

Also special thanks to all my family, my wife, sons and friends for all the help and support.

Contents

List of Abbreviations	i ii
List of Tables	
Introduction and Aim of the Work	1
Chapter I	
* Antimicrobial Resistance	5
Chapter II	
* Uropathogens and Susceptibility	32
Chapter III	
* UTI with Pregnancy	37
Subjects and Methods	56
Results	63
Discussion	69
Summary and Conclusion	73
Recommendations	76
References	77
Arabic Summary	

List of Abbreviations

AMC : Amoxicillin-Calvulanic acid.

AMR : Antimicrobial resistance

ARDB : Antibiotic Resistance Database

ARGs : Antibiotic resistance genes

AST : Antimicrobial susceptibility testing

C : Chloramphenicol

CARD : Comprehensive Antibiotic Resistance

Database

CAZ : Ceftazidime

CHDLs : Carbapenem-hydrolysing class D-lactamases

CDC : Center of Disease Control and prevention

CIP : Ciprofloxacin

CLSI : Clinical and Laboratory Standards Institute

CP-CRE : Carbapenem-resistant Enterobacteriaceae

CPD : Cefpodoxime

CPE : Carbapenemase-producing Enterobacteriaceae

CPM : Cefepime

CPO : Carbapenemase-producing organisms

CPR : Called candidate phyla radiation

CRE : Carbapenem-resistant Enterobacteriaceae

CRO : Carbapenem-resistant organisms

List of Abbreviations (Cont.)

CTX : Cefotaxime

DDT : Disk Diffusion Test

ESBL : Extended spectrum β-lactamase

ESBL-E : Extended-spectrum β-lactamase-producing

Enterobacteriaceae

ESBLs : Extended spectrum β -lactamases

FDA : Food and Drug Administration

GEN : Gentamycin

HMM : High molecular mass

LMM : Low molecular mass

MDR : multi drugs resistance

NA : Naldixic acid

NGS : Next-generation sequencing

ORFs : Open reading frames

PCR : Polymerase chain reaction

PDR : Pandrug-resistant

SXT : Cotrimoxazole

TE : Tetracycline

TSI : Triple sugar iron agar medium

UTI : Urinary tract infection

UTIs : Urinary tract infections

XDR : Extensively-drug-resistant

List of Tables

Table	Title	Page
1	FDA categorisation of antibiotics safety	42
	during pregnancy	
2	Primers sequences used in the study	61
3	Frequency of possible capabenemases	63
	producers among clinical isolates	
	detected by DDT	
4	Distribution of carbapenem resistance	64
	among different isolated strains	
5	Distribution of carbapenem sensitivity	65
	among different isolated strains	
6	Distribution of different carbapenemases	67
	genes among resistant strains detected	
	by real time PCR	

List of figures

Fig.	Title	Page
1	New drugs approved by the FDA	16
2	Glycopeptide resistance mechanism of	19
	Streptomyces	
3	Antibiotic resistance rate of CPE	34
	uropathogens compared to other MDRE	
	among study participants: University of	
	Gondar Hospital, February to May 2014	
4	CLED-Agar	57
5	Antibiotic sensitivity discs	58
6	PCR cycles of Genes	62
7	Frequency of possible capabenemases	64
	producers among clinical isolates	
	detected by DDT	
8	Distribution of carbapenem resistance	65
	among different isolated strains	
9	Distribution of carbapenem sensitivity	66
	among different isolated strains	
10	Distribution of carbapenem sensitivity	66
	among different isolated strains	
11	Distribution of different carbapenemases	68
	genes among resistant strains detected	
	by real time PCR	

Introduction and aim of the work

Multi drug resistance is now emerging worldwide at an alarming rate among gram negative bacteria, causing both community and hospital -acquired infections (*Schwaber et al.*, 2006). One of the most important emerging resistance traits in *Enterobacteriaceae* family members corresponds to resistance to carpabenem antibiotics, which is mainly associated with production of carpabenemases enzymes (*Pitout and Laupland*, 2008 and Coque et al., 2011).

Most enzymes mediates resistance are typically plasmid-mediated enzymes that hydrolyze the antibacterial agents (*Pfaller and Segreti*, 2006).

In the context of world wide spread of multidrug resistance, enzymes producers that are mostly *E.coli* and *Klebsiella pneumoniae* species are not only found as source of hospital but also of community acquired infections (*Coque et al.*, 2008; *Pitout and Laupland 2008 and Poirel et al.*, 2012).

A variety of enzymes, had been mainly reported in members of *Enterobacteriaceae* family (*Poirel et al.*, 2012).

Current techniques for detecting enzymes producers are based on the determination of susceptibility to antimicrobial agent.

The disk diffusion test and the E-test were proposed for that purpose with 80% to 90% sensitivities and specificities (*Drieux et al.*, 2008 and Gazin et al., 2012). Based on the same principle, automated methods for bacterial identification and susceptibility testing are also used for the

detection of resistant bacteria with a sensitivity range 80-90% and 50-80% specificity (*Drieux et al., 2008*).

The previous methods require overnight growth, meaning that up to 24 to 48 hrs can elapse before enzymes production is detected once the isolate had grown (*Drieux et al.*, 2008 and Gazin et al., 2012). This may conduce to a delay in the initiation of appropriate antibiotic therapy (*Schwaber et al.*, 2006).

Molecular detection of genes by PCR, hybridization, and sequencing is an alternative but remains costly and requires a certain degree of expertise that is not accessible to non-specialized laboratories, as PCR-based techniques require isolation of the organism from clinical specimens, the results cannot be obtained until 48hrs after obtaining the pathological samples (*Gazin et al.*, 2012).

Carbapenemases-producing Enterobacteriaceae are increasingly reported worldwide (www.CDC.gov) Urinary tract infection (UTI) is a bacterial infection commonly occurring during pregnancy. The incidence of UTI in pregnant women depends on parity and socioeconomic status and can be as high as 8%. (Nordman P et al., 2014). About 20%-40% of pregnant women with untreated bacteriuria develop gestational pyelonephritis (Nicole et al., 2009).

Carbapenems are last-line antimicrobial substances with a broad spectrum and high efficacy. Originally, they were developed from thienamycin, a substance that is produced by *Streptomyces cattleya* and considered as category B (page.31) during pregnancy according to FDA (*Schwarz S. et al.*, 2016).

As all beta-lactam antibiotics, carbapenems inhibit the D-alanyl-D-alanine carboxypeptidase and therefore they

interfere with the cell wall synthesis (Del Pozo JL et al., 2007).

Antimicrobial resistance against carbapenems in Enterobacteriacae, and occasionally also in other gramnegative bacteria can be caused by specific enzymes named *carbapenemases* (*Doumith M. et al.*, 2009).

Several carbapenemases have been known already for more than 20 years. but have been restricted to certain species and geographic regions. Therefore, molecular methods are additionally required for an exact, fast and sensitive determination of carbapenemases genes. Recently, several PCRs and real-time PCRs have been established (Nordmann P. et al., 2011).

Pyelonephritis in pregnant women has been associated with increased risk of preterm labour, low birth weight, poor child health during early infancy, maternal adult respiratory distress syndrome, and possible renal failure.E. coli is the main etiologic agent in urinary tract infection (UTI) and Pyelonephritis (*Kazemier et al.*, 2015).

Aim of the Work

The aim of this study is to detect carbapenemases encoding genes responsible for carbapenem resistant in commonest bacteria causing gestational Pyelonephritis.

Antimicrobial Resistance

Antimicrobial resistance (AMR) is a serious threat to health and the inappropriate use of antibiotics is central to the development of antibiotic resistance (www.CDC.gov). The UK five year AMR strategy recommends the strengthening of AMR surveillance to inform local prescribing and enables the monitoring of the impact of interventions aimed at reducing the burden of antibiotic resistance (AMR strategy UK. 2015).

Antimicrobial susceptibility data from diagnostic microbiology laboratories can be used for surveillance to monitor trends in AMR (*Ironmonger D et al.*, 2013).

Study in 2004 found a wide range for sampling urine specimens, from 29 to 266 urine samples/1000 patients/ year (*McNulty CA.et al., 2004*).

A Welsh study in 2006 found a similar range, with sampling rates varying from 0.6 to 237.3 urine samples/ 1000 patient/year (*Hillier S. et al., 2006*), suggesting substantial variability in local sampling policies. Studies in England and the United States have shown urine is the most frequent specimen sent for microbiological examination from non-hospitalised patients and urinary tract infection (UTI) is one of the most common diagnoses that results in antibiotic prescribing (*Petersen I 2007, Shapiro DJ, 2014*).

In England in 2009, there was a fivefold difference in antibiotic prescribing volume between general practices (*Wang KY et al., 2009*), with 74 % of antibiotic prescribing occurring in community settings in 2014 (*Public Health England 2015*).

There is a positive linear relationship between trends in antibiotic consumption and resistance (*Bell BG et al.*, 2014, Costelloe C, et al., 2010).

National guidance for the management of infections and prescribing in the community has not reduced the variation in antibiotic prescribing across general practices in the UK, particularly in the management of upper respiratory and urinary tract infections (*Hawker JI et al.*, 2014).

Causes of Bacterial Resistance:

1. Overuse:

The overuse of antibiotics is considered the most important cause for the evolution of resistance, confirmed by several epidemiological studies that have demonstrated a direct relationship between antibiotic consumption and the emergence of resistant bacteria strains. Despite warnings regarding overuse, antibiotics are overprescribed worldwide, In many countries, antibiotic use is unregulated and available over the counter without a prescription (*Golkar et al.*, 2014).

This lack of regulation results in accessible, plentiful and cheap antibiotics which promotes overuse (*Michael et al.*, 2014).

2. Inappropriate Prescribing:

Incorrect prescription of antibiotics widely contributes to the evolution of resistant bacteria, & exposes patients to potential complications of antibiotic therapy (*Lushniak*, 2014). Studies had been shown that treatment indication, choice of agent, or duration of antibiotic therapy is incorrect in 30% to 50% of cases (*CDC*, 2013). Sub-therapeutic antibiotic concentrations can lead to the development of

antibiotic resistance by supporting genetic alterations, such as changes in gene expression, horizontal gene transfer and mutagenesis (*Viswanathan*, 2014)

3. Extensive agricultural use:

The antibiotics used in live stock are ingested by humans when they consume food. The transfer of resistant bacteria to humans by farm animals was first noted more than 35 years ago, when high rates of antibiotic resistance were found in the intestinal flora of both farm animals and farmers. Molecular detection methods demonstrated that resistant bacteria in farm animals reach consumers through meat products (*Bartlett*, 2013).

This occurs through the following sequence of events:

- 1. Antibiotic use in food-producing animals kills or suppresses susceptible bacteria, allowing antibiotic-resistant bacteria to thrive.
- 2. Resistant bacteria are transmitted to humans through the food supply.
- 3. These bacteria can cause infections in humans that may lead to adverse health consequences (*CDC*, *2013*).

Antibacterial products sold for hygienic or cleaning purposes may also contribute to this problem, since they may limit the development of immunities to environmental antigens in both children and adults (*Michael et al.*, 201).

4. Availability of few new antibiotics:

The development of new antibiotics by the pharmaceutical industry had been hindered due to economic and regulatory obstacles, impeding a strategy that had been effective at combating resistant bacteria in the past. Of the 18 largest pharmaceutical companies, 15 abandoned the antibiotic field, reducing the number and diversity of research teams (*Bartlett*, 2013).

In addition, microbiologists recommended restraining antibiotic use. Therefore, once a new antibiotic is marketed, physicians often hold this new agent & reserve it only for the worst cases for fear of evolution of drug resistance. So, new antibiotics are often treated as "last-line" drugs to combat serious illnesses.

When new agents are eventually used, the emergence of resistance is nearly inevitable, yet the timeline for the development of resistance is unpredictable (*Gould and Bal*, 2013)

5. Regulatory barriers:

Between 1983 and 2007, a substantial reduction occurred in the number of new antibiotic approvals. Changes in standards for clinical trial design made by the U.S. Food and Drug Administration (FDA) during the past two decades have made antibiotic clinical trials particularly challenging. This requires a large sample population and consequently high costs, making the development of antibiotics uneconomical and unattractive (*Wright*, 2014).

Mechanisms of Antibiotic Resistance:

Resistance of bacteria to antibiotics often results from an inheritable resistance (*vertical transmission*), but it also occurs through horizontal gene transfer (acquired resistance). Horizontal transfer is more likely to happen in locations of frequent antibiotic use. Cross-resistance to several antibiotics may occur when a resistance mechanism encoded by a single