

Innovative System Using Low Cost Fabric Filters for Wastewater Treatment in Small Communities

A Thesis Submitted To Faculty of Engineering Ain Shams University for the Fulfillment Of the Requirements of M.Sc. Degree In Civil Engineering

Prepared by

Eng. Mostafa Wagih Tawfik Khalil

B.Sc. Civil Engineering, June 2013 Faculty of Engineering, Ain Shams University – Cairo, Egypt

Supervisors

Prof. Dr. Hamdy Ibrahim Ali

Professor of Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Tarek Ismail Sabry

Professor of Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Sayed Ismail Ali

Associate Professor of Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

2017

Innovative System Using Low Cost Fabric Filters for Wastewater Treatment in Small Communities

A Thesis For

The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

By

Eng. Mostafa Wagih Tawfik Khalil

B.Sc. in Civil Engineering May 2012 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Osama Fathy Mahmoud Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Azhar University.	
Prof. Dr. Mohamed Hassan Abdelrazik Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University.	
Prof. Dr. Hamdy Ibrahim Ali Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University.	
Prof. Dr. Tarek Ismail Sabry Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University.	

Date: .../.../2017

Dedication

This thesis is lovingly dedicated to

My supportive parents

And to

My wonderful siblings

And finally, A special dedication to

My lovely fiancée

For her continuous support, and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from September 2015 to March 2017.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date : - ---/-- /2017

Signature: - -----

Name : - Mostafa Wagih Tawfik Khalil

Researcher Data

Name : Mostafa Wagih Tawfik Khalil

Date of birth : 04 June 1991 Place of birth : Cairo, Egypt.

Last academic degree : Bachelor of Science Field of specialization : Civil Engineering. University issued the degree : Ain Shams University

Date of issued degree : July 2013

Current job : Demonstrator, Faculty of

Engineering, Ain Shams

University

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life. It is with immense gratitude that I acknowledge the support and help of **Prof**. **Dr**. **Hamdy Ibrahim Ali**, Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University.

I am profoundly grateful to **Prof**. **Dr**. **Tarek Ismail Sabry**, Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, his great efforts, meticulous revision, scientific guidance and tremendous support.

I would like to thank **Dr**. **Sayed Ismail Ali**, Associate professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, for his sincere help and guidance, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort he gave me.

Also I would like to thank Science and technology development Fund (STDF) for their funding of the practical part of the thesis.

ABSTRACT

Name: Mostafa Wagih Tawfik Khalil

Title: Innovative System Using Low Cost Fabric Filters for Wastewater

Treatment in Small Communities.

Faculty: Faculty of Engineering, Ain Shams University

Specially: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract:-

A pilot plant was constructed in Fayoum governorate, Egypt in order to investigate the efficiency of fabric filters combined with the previously constructed unit (ZECU). In the first phase; the flux rates were changed from 3.5-15 L/m²/hr and the differential hydraulic head was 1.5 m, average effluent TSS, BOD, CODt and CODs concentrations were 37.4 mg/l, 75 mg/l, 257.22 mg/l and 146.75 mg/l respectively. In the second phase the flux rate was 12 L/m2/hr and differential hydraulic head was changed to be 2.5 m, average effluent TSS, CODt and CODs concentrations were 43.6 mg/l, 133.7 mg/l and 105.3 mg/l respectively. In the third phase fabric filters were tested on the effluent of anaerobic treatment with the same flux rate 12 L/m2/hr and hydraulic head 2.5 m, average effluent TSS, CODt and CODs concentrations were 72 mg/l, 137.5 mg/l and 71 mg/l respectively. The potential removal mechanism for the suspended solids by fabric filters is straining or sieving by filter pores. The potential removal mechanism for dissolved organic matters is dynamic membrane layer formed on the fabric filters surface and was able to remove soluble organic matters with CODs average removal efficiencies of 21.25% 18.9% and 18.9% in first, second and third phase respectively.

Supervisors

Prof. Dr. Hamdy Ibrahim Ali

Professor of Environmental Engineering, Ain Shams University

Prof. Dr. Tarek Ismail Mahmoud Sabry

Professor of Environmental Engineering, Ain Shams University

Dr. Sayed Ismail Ali

Associate Professor of Environmental Engineering, Ain Shams University

Key Words:

Municipal Wastewater Treatment, Fabric filtration, Non-woven fabric filters, Decentralized Wastewater Treatment.

Table of Contents

1	INTRODUCTION	13
	1.1 GENERAL	13
	1.2 RESEARCH OBJECTIVES	13
	1.3 RESEARCH WORK PLAN	14
	1.4 THESIS STRUCTURE	14
2	LITERATURE REVIEW	16
	2.1 INTRODUCTION	16
	2.2 RURAL SANITATION PROBLEMS IN EGYPT	16
	2.3 WASTEWATER TREATMENT METHODOLOGY	17
	2.3.1 Primary Treatment	17
	2.3.2 Secondary Treatment	17
	2.3.2.1 Aerobic Decomposition	18
	2.3.2.2 Anaerobic Decomposition	18
	2.3.2.3 Anoxic Decomposition	19
	2.3.3 Tertiary Treatment	19
	2.4 WASTEWATER TREATMENT APPROACHES	19
	2.4.1 Centralized Sanitation Systems	20
	2.4.2 Decentralized Sanitation Systems	20
	2.4.2.1 Septic Tank	22
	2.4.2.2 Anaerobic Baffled Reactor	23
	2.4.2.3 Up-Flow Anaerobic Filter	24
	2.4.2.4 Up-Flow Septic Tank Baffled Reactor(USBR)	25

	2.4.2.5 Zero Energy Compact Unit(ZECU)	26
2.5	FILTRATION IN WASTEWATER TREATMENT	29
	2.5.1 Granular Filtration	29
	2.5.1.1 Granular filtration theory	29
	2.5.2 Membrane Filtration	31
	2.5.2.1 Membrane Processes	35
	2.5.2.2 Membrane Materials and Properties	38
	2.5.2.3 Membrane Fouling	39
	2.5.2.4 Membrane Cleaning	41
2.6	Filtration Modes	42
	2.6.1 Cross Flow Filtration	42
	2.6.2 Dead End Filtration	43
2.7	Filtration Types	43
	2.7.1 Surface Filtration	43
	2.7.2 Depth Filtration	44
2.8	MEMBRANE BIO-REACTOR	44
	FABRIC FILTERS IN WASTEWATER TREATMENT	45
	2.9.1 Non-Woven Fabrics	45
	2.9.2 Woven Fabrics	46
	2.9.3 Using Fabric Filters In MBR	46
	2.9.4 Testing Fabric Filters In LAB	46
	<u> </u>	
3 EX	PERIMENTAL WORK	48
3.1	INTRODUCTION	48
3.2	EXPERIMENTAL SETUP LOCATION	48
3.3	OPERATIONAL CONDITIONS	49
3.4	PILOT PLANT DESCRIPTION	50
	3.4.1 Existing (ZECU) Tank	52
	3.4.1.1 Modified ZECU tank	53
	3.4.2 Collection Tank	54
	3.4.3 Fabric Filters Tank	55
	3.4.3.1 Fabric Filter Modules	59

			3.4.3.2 Fabric Filters Flux Rate	60
			3.4.3.3 Fabric Filters Hydraulic Head	60
			3.4.3.4 Fabric Filters Cleaning	61
	3.5	EXPI	ERIMENTAL WORK PLAN	62
		3.5.1	First Phase (Changing Flux Rate)	62
		3.5.2	Second Phase (Changing Hydraulic Head)	63
		3.5.3	Third Phase (Operating after Anaerobic Treatment)	63
	3.6	SAM	PLING	63
	3.7	MEA	SUREMENTS	64
		3.7.1	$Total \ Suspended \ Solids(TSS) \ and \ Volatile \ Suspended \ Solids(VSS) \ \ . \ \ .$	65
		3.7.2	Chemical Oxygen Demand(COD)and Soluble Chemical Oxygen De-	
			mand(CODs)	65
		3.7.3	Biological Oxygen Demand(BOD)	66
		3.7.4	pH-Value	67
4	RE	SULT	\mathbf{S}	68
				68
				68
	4.3	FIRS	T PHASE (CHANGING FLUX RATES	69
		4.3.1	First Run	69
			4.3.1.1 Characteristics of influent/effluent wastewater in ZECU sys-	
			tem stages	69
				72
		4.3.2	Second Run	74
			4.3.2.1 Characteristics of influent/effluent wastewater in ZECU sys-	
			tem stages	74
			4.3.2.2 Characteristics of influent/effluent wastewater in fabric filters .	77
		4.3.3	Third Run	79
			4.3.3.1 Characteristics of influent/effluent wastewater in ZECU sys-	
			tem stages	79
			4 3 3 2 Characteristics of influent/effluent wastewater in fabric filters	80

		4.3.4 Fourth Run
		4.3.4.1 Characteristics of influent/effluent wastewater in ZECU sys-
		tem stages
		4.3.4.2 Characteristics of influent/effluent wastewater in fabric filters .
		4.3.5 Fifth Run
		4.3.5.1 Characteristics of influent/effluent wastewater in ZECU sys-
		tem stages
		4.3.5.2 Characteristics of influent/effluent wastewater in fabric filters .
		4.3.6 Sixth Run
		4.3.6.1 Characteristics of influent/effluent wastewater in ZECU sys-
		tem stages
		4.3.6.2 Characteristics of influent/effluent wastewater in fabric filters .
	4.4	SECOND PHASE (CHANGING HYDRAULIC HEAD)
		4.4.1 Characteristics of influent/effluent wastewater in ZECU system stages
		4.4.2 Characteristics of influent/effluent wastewater in fabric filters
	4.5	THIRD PHASE (OPERATING AFTER ANAEROBIC TREATMENT)
		4.5.1 Characteristics of influent/effluent wastewater in ZECU system stages
		4.5.2 Characteristics of influent/effluent wastewater in fabric filters
5	DIS	SCUSSION
	5.1	INTRODUCTION
	5.2	FABRIC FILTERS PERFORMANCE EVALUATION
		5.2.1 Total Suspended Solids Removal Efficiency(TSS)
		5.2.1.1 First Phase
		5.2.1.2 Second Phase
		5.2.1.3 Third Phase
		5.2.2 Organic Matter Removal Efficiency
		5.2.2.1 First Phase
		5.2.2.2 Second Phase
		5.2.2.3 Third Phase
		5.2.3 Percentage Passed Wastewater To Fabric Filters
		5.2.3.1 First Phase

	5.2.3.2 Second Phase	119
	5.2.3.3 Third Phase	120
	5.3 ZECU/FABRIC FILTER PERFORMANCE EVALUATION	121
	5.3.1 Total Suspended Solids Removal Efficiency(TSS)	121
	5.3.1.1 First Phase	121
	5.3.1.2 Second Phase	122
	5.3.1.3 Third Phase	123
	5.3.1.4 ZECU / Fabric filters Treatment Units Contribution In TSS	
	Removal	124
	5.3.2 Organic Matter Removal Efficiency	125
	5.3.2.1 First Phase	125
	5.3.2.2 Second Phase	128
	5.3.2.3 Third Phase	129
6	CONCLUSION	131
	6.1 INTRODUCTION	131
	6.2 CONCLUSION	131
	6.3 RECOMMENDATIONS	132
	6.4 FURTHER WORK	132

List of Figures

2-1	Centralized approach	20
2-2	Decentralized approach	21
2-3	Septic Tank	22
2-4	Anaerobic Baffled Reactor[1]	23
2-5	Up-flow Anaerobic Filter[1]	24
2-6	Cross sectional view of the USBR	26
2-7	ZECU system pilot plant-Zenein WWTP	28
2-8	ZECU system full scale plant-Zawyet El Karatsah WWTP	28
2-9	Straining action	30
2-10	Removal by sedimentation	30
2-11	Straining action	31
2-12	Removal by sedimentation	31
2-13	Removal by Impaction	31
2-14	Schematic showing separation process in membrane filters[2]	32
2-15	Membrane process designation by solute size[3]	34
2-16	Dead-end vs. cross-flow filtration	38
2-17	Cross flow and dead end filtration	43
2-18	Schematic membrane bioreactor system process	45
3-1	Aerial photo of the general location of WWTP	49
3-2	Layout of WWTP showing the pilot plant location	49
3-3	Pilot plant units arrangement	51
3-4	Different Treatment Units of ZECU tank	53

3-5	Schematic Diagram of Modified ZECU treatment units in First And Sec-	
	ond Research phases	54
3-6	Schematic Diagram of Modified ZECU treatment units in Third Research	
	phases	54
3-7	Collection Tank	55
3-8	Dosing Pump	55
3-9	Fabric Filters Tank Design Drawing Views	57
3-10	Fabric Filters Tank In Site	58
3-11	Fabric Filters Arrangement In One Compartment	58
3-12	fabric filters module	59
3-13	fabric filter	59
3-14	Flow Meter	6(
3-15	Hydraulic Head on Fabric Filters	61
4-1	Total Suspended Solids Concentration in ZECU stages (First run)	69
4-2	Chemical Oxygen Demand Concentration in ZECU stages (First run)	7(
4-3	Soluble Chemical Oxygen Demand Concentration in ZECU stages (First	
	run)	7(
4-4	Biochemical Oxygen Demand Concentration in ZECU stages (First run) .	71
4-5	pH Value in ZECU stages (First run)	71
4-6	Total Suspended Solids Concentration in Fabric filters Influent/Effluent	
	(First run)	72
4-7	Chemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(First run)	72
4-8	Soluble Chemical Oxygen Demand Concentration in Fabric filters Influ-	
	ent/Effluent (First run)	73
4-9	Biochemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(First run)	73
4-10	pH Value in Fabric filters Influent/Effluent (First run)	74
4-11	Total Suspended Solids Concentration in ZECU stages (Second run)	74
4-12	Chemical Oxygen Demand Concentration in ZECU stages (Second run) .	75

4-13	Soluble Chemical Oxygen Demand Concentration in ZECU stages (Sec-	
	ond run)	75
4-14	Biochemical Oxygen Demand Concentration in ZECU stages (Second run)	76
4-15	pH Value in ZECU stages (Second run)	76
4-16	Total Suspended Solids Concentration in Fabric filters Influent/Effluent	
	(Second run)	77
4-17	Chemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(Second run)	77
4-18	Soluble Chemical Oxygen Demand Concentration in Fabric filters Influ-	
	ent/Effluent (Second run)	78
4-19	Biochemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(Second run)	78
4-20	pH Value in Fabric filters Influent/Effluent (Second run)	79
4-21	Total Suspended Solids Concentration in ZECU stages (Third run)	79
4-22	Chemical Oxygen Demand Concentration in ZECU stages (Third run)	80
4-23	Soluble Chemical Oxygen Demand Concentration in ZECU stages (Third	
	run)	80
4-24	Biochemical Oxygen Demand Concentration in ZECU stages (Third run)	81
4-25	pH Value in ZECU stages (Third run)	81
4-26	Total Suspended Solids Concentration in Fabric filters Influent/Effluent	
	(Third run)	82
4-27	Chemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(Third run)	82
4-28	Soluble Chemical Oxygen Demand Concentration in Fabric filters Influ-	
	ent/Effluent (Third run)	83
4-29	Biochemical Oxygen Demand Concentration in Fabric filters Influent/Effluent	
	(Third run)	83
4-30	pH Value in Fabric filters Influent/Effluent (Third run)	84
4-31	Total Suspended Solids Concentration in ZECU stages (Forth run)	84
4-32	Chemical Oxygen Demand Concentration in ZECU stages (Forth run)	85
4-33	Soluble Chemical Oxygen Demand Concentration in ZECU stages (Forth	
	run)	85