NUMERICAL INVESTIGATION OF HEAT TRANSFER AND FLUID FLOW IN HEAT EXCHANGERS WITH INSERTS

By

Eng. Alaa Eldin Omar Mahfouz

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
In
MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION OF HEAT TRANSFER AND FLUID FLOW IN HEAT EXCHANGERS WITH INSERTS

By

Eng. Alaa Eldin Omar Mahfouz

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E.Khalil

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Ahmed Medhat

Dr. Waleed Abdelsamee M. Abdelmaksoud

Professor, Mechanical Power Engineering, Housing and Building National Research Center Lecturer, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

NUMERICAL INVESTIGATION OF HEAT TRANSFER AND FLUID FLOW IN HEAT EXCHANGERS WITH INSERTS

By

Eng. Alaa Eldin Omar Mahfouz

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In MECHANICAL POWER ENGINEERING

Approved by Examining Committee:

Prof. Dr. Essam E.Khalil Thesis Main Advisor

Prof. Dr. Abdel-Wahed Fouad El-Dib Internal Examiner

Prof. Dr. Osama Ezzat Abdel-LatefProfessor of Mechanical Power Engineering-Benha University

External Examiner

Engineer: Alaa Eldin Omar Mahfouz Abdel-Aziz

Date of Birth: 1/4/1986 **Nationality:** Egyptian

Email: eng alaaomar2008@yahoo.com

Mobile: 01226669512

Address: St3- Ard Elmahlag - Salah Salem - Beni-Suef City

Registration Date: 1/10/2013 Awarding Date: //2017 Degree: Doctor of Philosophy

Department: Mechanical Power Engineering

Supervisors: Prof. Dr .Essam E.Khalil

Prof. Dr. Ahmed Ahmed Medhat

(Mechanical Power Engineering - Housing and Building National Research Center)

Dr. Waleed Abdelsamee M. Abdelmaksoud

Examiners: Prof. Dr. Essam E.Khalil (Thesis Main Advisor)

Prof. Dr. Abdel-Wahed Fouad Abdou El-Dib (Internal Examiner)
Prof. Dr. Osama Ezzat Abdel-Latef (External Examiner)
(Mechanical Power - Faculty of Engineering - Engineering-Benha University)

Title of Thesis: NUMERICAL INVESTIGATION OF HEAT TRANSFER AND

FLUID FLOW IN HEAT EXCHANGERS WITH INSERTS

Keywords: CFD, Nusselt number, Friction factor, Performance evaluation

criteria, Twisted tape.

Summary:

The effect of the twisted tape with different twisted ratios are numerically investigated on the heat transfer rate and friction factor to determine the optimum twisted ratio that give the highest heat transfer rate and the best thermal performance factor. The twisted tape with rod, helical twisted tape with rod, alternated clockwise and counterclockwise twisted tape, and vortex generators inserts are numerically investigated. Comparisons between these inserts and the plain tube are performed based on the heat transfer rate, friction factor, and the performance evaluation criteria.

ACKNOWLEDGEMENT

I would like to prostrate and praise to THE ALMIGHTY ALLAH whose blessing, guide, and mercy have been behind whatever successfulness may have been achieved in this work. I am eternally grateful that His blessings have come in the form of family and friends who have supported me in all my endeavours.

This dissertation would not be successfully completed without the generous support of many people. First, I would like to express my deepest gratitude to my dearest supervisors, **Prof.Dr.Essam E. Khalil** for the support, continuous encouragement and distinctive supervision throughout this work. In addition, I would like to thank **Dr. Waleed Abdelsamee** and **Prof.Dr. Ahmed Medhat** for their support and helping.

Also, I would like to thank Prof. Dr. Abdel-Wahed El-Dib, Prof. Dr. Osama Ezzat, Prof. Dr.Gamal El-Harery, Dr.A.Abozaid, and Mr. Yasser for helping and for their valuable suggestions.

In addition, I would like to give my sincere thanks to my parents, my lovely wife, my dear son Omar and my little baby Ahmed for their constant encouragement, support and care during the whole period.

Finally, I should express my gratitude for ANSYS for their support via supplying us with a free license of the ANSYS 16 package.

TABLE OF CONTENTS

SUBJECT	PAGE
CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
SYMBOLS AND ABBREVIATIONS	xiii
ABSTRACT	xvi
CHAPTER 1 INTRODUCTION	1
1.1 General Introduction	1
1.2 Heat Transfer Enhancement Techniques	1
1.3 Performance Evaluation Criteria (PEC)	3
1.4 Thesis Layout	3
CHAPTER 2 LITERATURE REVIEW	5
2.1 Numerical Studies of Heat Exchanger Tube with Inserts	5
2.2 Experimental Studies of Heat Exchanger Tube with Inserts	11
2.3 Objectives of the Present Study	17
CHAPTER 3 GOVERNING EQUATIONS	18
3.1 Governing Equations	18
3.2 Turbulence Model	19
3.3 Wall Treatment Methods	20
3.4 Numerical Techniques	21
CHAPTER 4 NUMERICAL VALIDATION	22
4.1 Numerical validation of plain tube	22
4.1.1 Validation with Eiamsa-ard et al.	22
4.1.2 Validation with Tang et al.	27
4.1.3 Validation with Eiamsa-ard and Promvonge	28
4.2 Validation with heat exchanger tube fitted with twisted tape:	30

4.2.1 Validation with Eiamsa-ard et al.	30
CHAPTER 5 RESULTS AND DISCUSSIONS	37
5.1 Numerical simulation techniques	37
5.2 Data Reduction	38
5.3 Shell and tube heat exchanger	38
5.4 Steady and unsteady solver check	42
5.5 Heat Exchanger Tube fitted with Twisted Tape	43
5.6 Heat Exchanger Tube fitted with Twisted Tape with Rod	50
5.7 Heat Exchanger Tube fitted with Helical Twisted Tape with Rod	53
5.8 Heat Exchanger Tube fitted with Alternated Clockwise and Counter-clockwise Twisted Tape	57
5.9 Heat Exchanger Tube fitted with Vortex Generator inserts	63
5.10 Industrial Refrigeration Heat Exchanger Condenser	67
CHAPTER 6 SUMMARY AND CONCLUSIONS	68
6.1 Summary	68
6.2 Conclusions	68
6.3 Recommendations for future work	69
REFERENCES	70
Appendix A: Different Heat Exchangers fitted with Twisted Tape	73
Appendix B: Steady and Unsteady Solver Check	78

LIST OF TABLES

Table	Description	Page
Table 3.1	Recommended y+ values for the wall functions	21
Table 4.1	Test tube specifications	22
Table 4.2	Double pipe heat exchanger specifications	29
Table 4.3	Specifications of the experiment	31
Table 4.4	Summary of the average deviation between the Experimental and Numerical results (Nusselt number, friction factor, and Performance Evaluation Criteria)	36
Table 5.1	properties of water at 305K and at 345K	37
Table 5.2	Specifications of the Shell and tube heat exchanger model	40
Table 5.3	Specifications of the numerical model	43

LIST OF FIGURES

Figure	Description	Page
Figure 1.1	Internal flow heat transfer enhancement schemes	2
Figure 1.2	Helically coiled tube	2
Figure 1.3	Configuration of twisted tape insert	3
Figure 2.1	Experimental setup	5
Figure 2.2	Grids used in the analysis	5
Figure 2.3	Contours of temperature (K) of the pipe fluid	6
Figure 2.4	Structure of one module (a) Photographic view (b) Isometric view	6
Figure 2.5	Shell and tube heat exchanger with vane swirler inserts	7
Figure 2.6	Heat exchanger tube with helical baffle (a) Photography (b) Mesh system	7
Figure 2.7	Comparison of numerical simulations with the experimental data	8
Figure 2.8	mesh of twisted tri-lobed tube (TTT)	8
Figure 2.9	Comparison of Nusselt number and friction factor between the numerical results and the experimental results	9
Figure 2.10	Geometry of the helical pipe	9
Figure 2.11	Validation results for (a) Case 1 (b) Case 2	10
Figure 2.12	Validation results of dimensionless temperature	10
Figure 2.13	Geometries of circular test tube fitted with (a) 4 co-swirl TT (b) 4 counter-swirl TT	11
Figure 2.14	Solid rings with four twisted tapes	11
Figure 2.15	regularly spaced twisted tape	11
Figure 2.16	(a) counter-dual TT and (b) co-dual TT	12
Figure 2. 17	Double counter twisted tape insert	12
Figure 2. 18	Test tube fitted with wire coiled twisted tape	13
Figure 2. 19	Tube with perforated TT	13
Figure 2. 20	Rectangular-cut twisted tape insert	13
Figure 2. 21	Helical screw inserts	13
Figure 2. 22	Tube fitted with helical twisted tape inserts	14
Figure 2. 23	(a) Test tube with propellers and (b) various propeller types	14

Figure 2. 24	Rotating turbine (RTSG)	15
Figure 2. 25	Propeller-type turbulator	15
Figure 2. 26	Plate-fin channels: (a) plain (b) perforated (c) offset strip (d) louvered (e) wavy (f) vortex-generator (g) pin	16
Figure 2. 27	Various cross-sectional rib shapes	16
Figure 2. 28	Performances of various rib shapes: (a) F(Nu) and (b) F(f)	16
Figure 3.1	Fluid element and coordinate system used in the conservation laws	18
Figure 3.2	Boundary layer regions	20
Figure 4.1	Sketch of the heat exchanger tube [23]	23
Figure 4.2	Plain tube meshing	23
Figure 4.3	Variation of (a) Nusselt number and (b) friction factor with different number of mesh elements at Re=4900	24
Figure 4.4	Validation of numerical with experimental results for Nusselt number of plain tube	26
Figure 4.5	Validation of numerical with experimental results for friction factor of plain tube	26
Figure 4.6	Mesh of plain tube created by ANSYS workbench	27
Figure 4.7	Validation of numerical with experimental results for Nusselt number of plain tube	28
Figure 4.8	Validation of numerical with experimental results for friction factor of plain tube	28
Figure 4.9	Double pipe heat exchanger used in experimental work	29
Figure 4.10	Validation of numerical with experimental results for Nusselt number	30
Figure 4.11	Validation of numerical with experimental results for friction factor	30
Figure 4.12	Test tube with Twisted Tape	31
Figure 4.13	Tube fitted with TT insert, created by ANSYS workbench	32
Figure 4.14	(a) Contour of velocity (b) velocity vectors directions at the middle of the tube with TT insert $H=3$	32
Figure 4.15	Scaled Residuals for heat exchanger tube fitted with twisted tape solved with SST k- ω turbulence model (H=4 , Re=21000)	33
Figure 4.16	Scaled Residuals for heat exchanger tube fitted with twisted tape solved with Standard k- ϵ turbulence model (H=4 , Re=21000)	33
Figure 4.17	Validation of numerical with experimental results for Nu, (H=4)	34
Figure 4.18	Validation of numerical with experimental results for f, (H=4)	34

Figure 4.19	Validation of numerical with experimental results for PEC, (H=4)	34
Figure 4.20	Validation of numerical with experimental results for Nu, (H=3)	35
Figure 4.21	Validation of numerical with experimental results for f, (H=3)	35
Figure 4.22	Validation of numerical with experimental results for PEC, (H=3)	36
Figure 5.1	shell and tube heat exchanger (22 million mesh elements)	39
Figure 5.2	Pathlines of the water inside the tube side fitted with twisted tape	39
Figure 5.3	Configuration of TT inside tube	40
Figure 5.4	Scaled Residuals for shell and tube heat exchanger with tube fitted with twisted tape (H=3 , Re=21000)	41
Figure 5.5	Comparison of Nusselt number for heat exchanger tube with constant heat flux, and Shell and Tube heat exchanger (All tubes fitted with twisted tape H=3)	41
Figure 5.6	Comparison of friction factor for heat exchanger tube with constant heat flux, and Shell and Tube heat exchanger (All tubes fitted with twisted tape H=3)	41
Figure 5.7	Scaled Residuals of unsteady solver for heat exchanger tube fitted with twisted tape with H=2.65 (Re=4900)	42
Figure 5.8	Deviation percentage between the results of Steady and Unsteady solver for heat exchanger tube fitted with twisted tape with H=2.65 (Re=4900)	42
Figure 5.9	Four different meshes of the tube with TT insert	43
Figure 5.10	Variation of (a) Nusselt number and (b) friction factor with different number of mesh elements for tube fitted with TT (H=2.6, Re=4900)	44
Figure 5.11	TT configuration with different H values	45
Figure 5.12	Pathlines of the water inside the tube fitted with TT	45
Figure 5.13	Contour plots of the temperature (a) plain tube (b) tube fitted with TT at $Re = 4900$ at the middle of the tube.	46
Figure 5.14	Variation of Nusselt number with Reynolds number for different H values	46
Figure 5.15	Variation of Nu/Nu0 with Reynolds number	47
Figure 5.16	Variation of friction factor with Reynolds number for different H values	47
Figure 5.17	Variation of f/f0 with Reynolds number	47
Figure 5.18	Variation of PEC with Reynolds number	48
Figure 5.19	Comparison between CFD and correlations of (a) Nusselt number (Eq. 5.7) (b) friction factor (Eq. 5.8)	49
Figure 5.20	Comparison between CFD and correlations of (a) Nusselt number (Eq. 5.9) (b) friction factor (Eq. 5.10)	50

Figure 5.21	Geometry of twisted tape with rod and meshing of the tube with TTR	50
Figure 5.22	Pathlines and Vectors of velocity of the water inside the tube fitted with TTR	51
Figure 5.23	Temperature Contour of TTR with H=1.75 at the middle of the tube (at Re= 4900)	51
Figure 5.24	Variation of Nusselt number with Reynolds number	52
Figure 5.25	Variation of friction factor with Reynolds number	52
Figure 5.26	Comparison between PEC of TTR, and TT	53
Figure 5.27	Geometry of HTTR insert	53
Figure 5.28	Pathlines and Vectors of velocity of the water inside the tube HTTR insert.	54
Figure 5.29	Temperature Contour of Plain tube and HTTR with H=2.6 (Re= 4900 at the middle of the tube)	54
Figure 5.30	Scaled Residuals of heat exchanger tube fitted with HTTR with H= 5.25 (at Re= 2000).	55
Figure 5.31	Variation of Nusselt number with Re.	55
Figure 5.32	Variation of friction factor with Re.	56
Figure 5.33	Comparison between PEC of HTTR, and TT	56
Figure 5.34	The ACCTT configuration	57
Figure 5.35	Pathlines of the water inside the tube with ACCTT insert	57
Figure 5.36	Temperature Contour of ACCTT with H= 2.6 at the middle of the tube (at Re= 4900)	58
Figure 5.37	Temperature Contour of ACCTT at the middle of the tube at Re= 4900 (a)Plain tube (b) H=2.6 (c) H=1.75	59
Figure 5.38	Variation of Nusselt number with Reynolds number	59
Figure 5.39	Variation of Nu/Nu0 with Reynolds number	60
Figure 5.40	Variation of friction factor with Reynolds number	60
Figure 5.41	Variation of f/f0 with Reynolds number	60
Figure 5.32	Comparison between PEC of ACCTT, and TT	61
Figure 5.43	Comparison between contour plots of temperature at Re= 4900 at the middle of the tube fitted with (a) TT with H=1.75, (b) TTR with H=1.75, (c) HTTR with H=2.6, (d)ACCTT with H=1.75	61
Figure 5.44	Nusselt number with Re for twisted tape inserts that have high PEC	62
Figure 5.45	Nu/Nu_0 with Re for twisted tape inserts that have high PEC	62

Figure 5.46	PEC with Re for twisted tape inserts that have high PEC	62
Figure 5.47	Geometry of vortex generator with two straight sides (a) case $A\theta = 16^{\circ}$ (b) case B $\theta = 45^{\circ}$ (c) case C	63
Figure 5.48	Geometry of Vortex generator insert with two curved sides (case C)	63
Figure 5.49	Contour plots of temperature for (a) case A $\theta = 16^{\circ}$ (b) case B $\theta = 45^{\circ}$	64
Figure 5.50	Variation of Nusselt number with Reynolds number for case A $\theta = 16^{\circ}$, case B $\theta = 45^{\circ}$, and case C	64
Figure 5.51	Variation of friction factor with Reynolds number for case A $\theta=16^{o}$, case B $\theta=45^{o}$, and case C	64
Figure 5.52	Meshing of the tube fitted with vortex generator insert with two curved sides (case C)	65
Figure 5.53	Path lines of the tube fitted with vortex generator insert with two curved sides (case C)	65
Figure 5.54	Variation of PEC with Reynolds number for case A θ =16 o, case B θ =45o , and case C	65
Figure 5.55	Configuration of different number of vortex generator inserts with two curved sides inside the tube	66
Figure 5.56	Variation of Nusselt number with Reynolds number for different distance between the inserts (case C)	66
Figure 5.57	Variation of friction factor with Reynolds number for different distance between the inserts (case C)	66
Figure 5.58	Variation of PEC with Reynolds number for different distance between the inserts	67

Nomenclature

- **d** Tube diameter, mm
- $\vec{\mathbf{F}}_{\mathbf{b}}$ External body force, N
- **f** Friction factor
- **h** Heat transfer coefficient, W/m²k
- H Twisted tape ratio
- k turbulent kinetic energy, J/kg
- L Length of the tube, mm
- m Mass, kg
- **m** Mass flow rate, kg/s
- Nu Nusselt Number
- P Pressure, Pa
- Pr Prandtl Number
- **PR** Pitch Ratio
- **Q** Heat transfer rate, W
- **q** Heat flux, W/m²
- **Rc** Radius of curvature
- Re Reynolds Number
- **S**_E External heat sources
- T Temperature, K
- U Instantaneous velocity component in x direction, m/s
- V Instantaneous velocity component in y direction, m/s
- W Instantaneous velocity component in z direction, m/s
- w Width of the twisted tape, mm
- x Distance between two vortex generators, mm
- y Length of 180° twist, mm
- y⁺ Non-dimensional distance
- x, y, z Cardinal coordinate components

Greek letters

- $\Delta \mathbf{P}$ Pressure drop, Pa
- κ Thermal conductivity, W/m k
- ρ Fluid density, kg/m³
- μ Dynamic viscosity, N.s/m²
- $\bar{\bar{\tau}}$ Stress tensor, kg/m.s²
- ε Dissipation rate, W/s
- **E** Effectiveness
- ∇ Gradient
- ω Specific dissipation

Superscripts and Subscripts

- **b** Bulk
- h Hot
- i,j,k Cartesian coordinates' directions
 - i Inlet
 - o outlet
- **surf** Inner tube surface
- w Water