

Ain Shams University Faculty of Science Chemistry Department

SYNTHESIS AND CHARACTERIZATION OF SOME POLYAROMATIC COMPOUNDS AND THEIR APPLICATION ON CEMENTITIOUS MATERIALS

A Thesis Submitted By

Ahmed Awad Abdelnaby Awad

M.Sc. Chemistry, Faculty of Science Beni suef University (2006)

To Chemistry Department, Faculty of Science, Ain Shams University

Thesis Submitted for the Award Ph.D Degree in Chemistry

Supervision by

Prof. Dr. Salah A. Abo-El-Enein (D.Sc.)

Professor of Physical Chemistry& Building Material, Faculty of Science,
Ain Shams University

Prof. Dr. Abdelsatar Elgawzy

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Dr. Safaa M. A. El-Gamal

Associated Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Dr. Nour EL-Din Ahmed

Lecturer of Organic Chemistry, Faculty of Science, Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

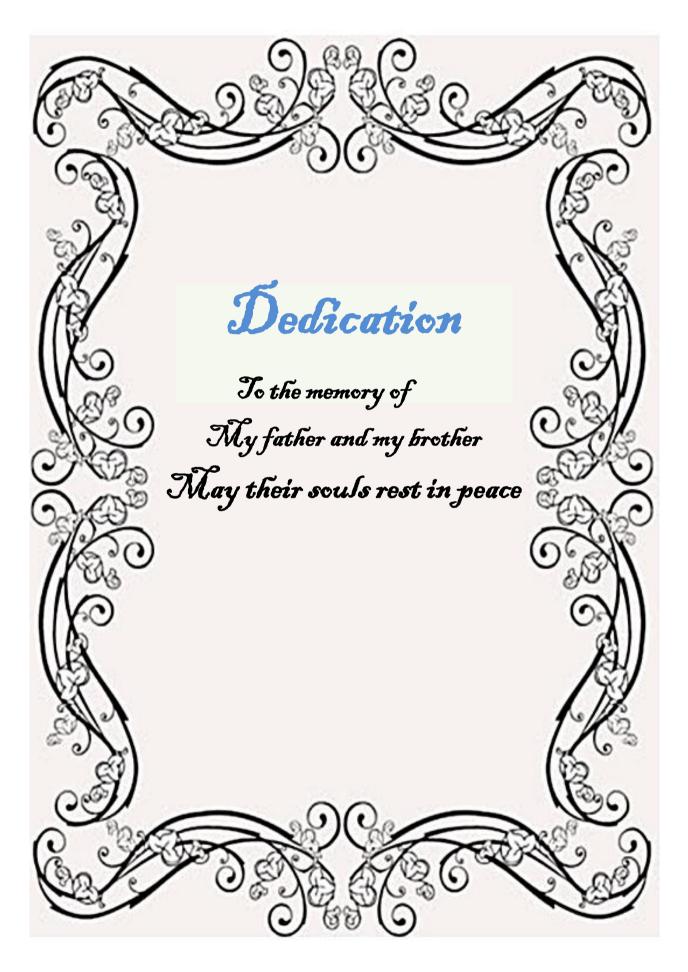
SYNTHESIS AND CHARACTERIZATION OF SOME POLYAROMATIC COMPOUNDS AND THEIR APPLICATION ON CEMENTITIOUS MATERIALS

A Thesis Submitted Ahmed Awad Abdelnaby Awad

M.Sc. (2006)
Faculty of Science, Beni Suef University To

Chemistry Department, Faculty of Science, Ain Shams University

Supervised by


Prof. Dr. Salah A. Abo-El-Enein (D.Sc.) Professor of Physical Chemistry& Building Material, Faculty of Science, Ain Shams University The late Prof. Dr. Abdelsatar Elgazwy Professor of Organic Chemistry, Faculty of Science, Ain Shams University Dr. Safaa M. A. El-Gamal Associated Professor of Physical Chemistry, Faculty of Science, Ain Shams University Dr. Nour EL-Din Ahmed Lecturer of Organic Chemistry

Head of Chemistry Department

Faculty of Science, Ain Shams University

Prof. Dr. Ibrahim H. A. Badr

DEDICATION

The thesis is dedicated to the late Prof. Dr. Abdolsatar S. A. H. Elgazuy, who suggested the subject of this investigation with Prof. Dr. Salah A. Abo-El-Enein (D. Sc.)

Acknowledgement

First and foremost, I would like to thank **Fillah** for giving me the opportunity and the strength to accomplish this work.

I would like to express my deep gratitude to Prof. Dr. Salah A. Atro-ElEnein (D. Sc.) Professor of Physical Chemistry & Building Material, Faculty
of Science, Ain Shams University and late Prof. Dr. Athelsatar S. A. H.

Elgazury for suggesting the subject of this research, their kind help, guidance
and interpretation of the results obtained in this study.

I would like to express my deep gratitude to Dr. Safaa Mchamed Fluwad El-Gamal
Associated Prof. of physical chemistry, Faculty of Science, Ain Shams University, for
her valuable supervision, advice, unlimited support and constructive suggestions

I would like to express my deep gratitude to **Dr. Nour ET-Din Ahmed** lecturer of organic chemistry, Faculty of Science, Ain Shams University, for his kind advice and unlimited support during the experimental part of organic chemistry.

I owe great thanks to all my colleagues at Lafarge Cement Egypt quality department for their valuable support throughout the thesis.

throughout the thesis.

I owe great thanks and sincere love to my wife **Rabab Ith Ebrahim** for her encouragement and support throughout my work

ABESTRACT

Chemical admixtures are organic compounds including retarders, accelerators and superplasticizers; their role is mainly acting during the initial mixing of cement, mortar or concrete with water in the preparation of the fresh pastes. Superplastizers are added to the fresh cement pastes to improve the physico-chemical and mechanical properties of cement and concrete pastes; their effect is to increase the flowing characteristics of the fresh pastes by reducing the standard water of consistency (decrease the initial W/C ratio and increasing the workability during the preparation of the fresh cement pastes. In this investigation, three novel organic aromatic compounds were prepared, and from the results obtained regarding chemical analysis, molecular and structural characteristics, it was formed that one of these superplasticizers proved to be the more effective one this 5,5`-diformayl-2,2`-dioxido-1,1`-binaphthyl-4,4`-disulfonate is sodium (SDD) which represents the novel superplasticizer achieved. There fore, this superplasticizes (SDD) was used in this study with different doses of 0.25,0.50,0.75 and 1.00% by mass of cement and the physic-mechanical and chemical characteristics of the hardened cement pastes were studied at different ages of hydration namely, 1,3,7,28 90 and 180 days. The results obtained indicated that the compressive strength of the hardened cement pastes increase with increasing additions of SDD up to 0.50% and 0.75% by mass of cement, whereas the strength decreases at 1.00% addition of SDD. Evidently, at low SDD additions the strength increases due to electrostatic repulsion as a result of adsorption of SDD around cement grains leading to similar charges of cement grains. At higher SDD addition (at 1.00%) the decrease in strength values is mainly due to steric effect, a result which is related to the higher conjugation system and the planner structure of SDD.

CHAPTER I

Introduction & Object of Investigation

CHAPTER II

Materials & Experimental Techniques

CHAPTER III

Results & Discussion

Summary & Conclusion

Summary & Conclusion

References

References

Arabic Summary

Arabic Summary

Abbreviations

Symbols	Description
SDD	Sodium5,5'-Diformyl-2,2'- Dioxide -1,1'- Binaphthyl-4,4'-Disulfonate
DDD	5,5'-Diformyl-3,3'-Diiodo-2,2'-Dioxido-1,1'-Binaphthyl-4,4'-Disulfonate
SMD	Sodium3',3"-Methylene Bis(2,2'-Dioxido-1,1'-Binaphthyl -3- Sulfonate)
OPC	Ordinary Portland Cement
DBD	3,3'-Diiodo-1,1'-Binaphthyl-2,2'-Diol
MBD	3,3'-Methylenedi-1,1'-Bibenzobenzene-2,2'-Diol
NMR	Nuclear Magnetic Resonance
FTIR	Infra Red Spectroscopy
SiO ₂	Silicon Dioxide
Al_2O_3	Aluminum Oxide
Fe ₂ O ₃	Ferric Oxide
CaO	Calcium Oxide
MgO	Magnesium Oxide
SO ₃	Sulfur Trioxide
K2O	Potassium Oxide

Na ₂ O	Sodium Oxide
LSF	Lime Saturation Factor
SM	Silica Modulus
AM	Alumina Modulus
C_3S	Tricalcium Silicate
C_2S	Di calcium Silicate
C ₃ A	Tricalcium Aluminate
C ₄ AF	Tetracalcium Alumino Ferrite
W/C	Water/Cement Ratio
Wn	Chemically Combined Water
XRD	X-ray Diffraction Analysis
DSC	Differential Scanning Calorimetry
CSH	Calcium Silicate Hydrates
C3A.3CaSO4.32H2O	Calcium Sulphoaluminate Hydrate (Ettringite)
C ₃ A.CaSO ₄ .12H ₂ O	Mono-Sulphate Hydrate
СН	Calcium Hydroxide
CC	Calcium Carbonate
CASH	Calcium Aluminosilicate Hydrate