

EFFECT OF DESIGN PARAMETERS ON COLUMN SHORTENING IN TALL CONCRETE BUILDINGS

By

Eslam Abd El-Nabi Ahmed Hemayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

EFFECT OF DESIGN PARAMETERS ON COLUMN SHORTENING IN TALL CONCRETE BUILDINGS

By

Eslam Abd El-Nabi Ahmed Hemayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Adel Y. Akl	Prof. Dr. Osman. M. Ramadan
Professor of Struc. Analysis and	Professor of Struc. Analysis and
Mechanics	Mechanics
Structural Engineering Department Faculty of Engineering, Cairo University	Structural Engineering Department Faculty of Engineering, Cairo University
· · · · · · · · · · · · · · · · · · ·	, ,

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EFFECT OF DESIGN PARAMETERS ON COLUMN SHORTENING IN TALL CONCRETE BUILDINGS

By

Eslam Abd El-Nabi Ahmed Hemayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Adel Y. Akl, Thesis Main Advisor

Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Osman M. Ramadan, Member

Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Walid A. Attia, Internal Examiner

Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Mohammed S. Sayed, External Examiner

Professor of properties of materials, Housing & Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Eslam Abd El-Nabi Ahmed Hemayed

Date of Birth: 29/11/1985 **Nationality:** Egyptian

E-mail: eslam_hemayed@yahoo.com

Phone: 01221266456

Address: Housh Issa, Al-Behira, Egypt

Registration Date:1/10/2009Awarding Date:..../..../2015Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Adel Y. Akl

Prof. Dr. Osman M. Ramadan

Examiners:

Porf. Dr. Adel Y. Akl

Porf. Dr. Osman M. Ramadan Prof. Dr. Walid A. Attia

Prof. Dr. Mohammed S. Sayed, Prof.- Housing & Buld. N. R. C.

Title of Thesis:

Effect of Design Parameters on Column Shortening in Tall Concrete Buildings

Key Words:

Column shortening; creep; shrinkage; differential shortening; steel stress

Summary:

In tall concrete buildings, the vertical elements: columns, shear walls, and cores undergo elastic shortening and time dependant axial shortening caused by creep and shrinkage. In this study, a computer program was developed and verified to calculate column axial shortening based on the ACI 209R-92 model. The developed program was used to investigate the effects of different design parameters on column shortening. The results showed that increasing the column design reinforcement ratio increases both before-floor-casting and after-floor-casting column shortening. In particular, compared to 1% ratio, increasing the column reinforcement ratio to 2%, 3%, and 4% increases the before-floor-casting column shortening by 5% to 11%, 9% to 22%, and 13% to 32%, respectively. Besides, compared to 1% ratio, increasing the column reinforcement ratio to 2%, 3%, and 4% increases the after-floor-casting column shortening by 7% to 9%, 14% to 17%, and 20% to 27%, respectively. However, the effect of column aspect ratio has a minor effect on column shortening. Nevertheless, increasing the rate of construction results in a significant increase in the after-floor-casting shortening but greatly reduces the before-floor-casting shortening of columns. In addition, the results showed that increasing the design concrete strength increases the column shortening.

Acknowledgments

Thanks to ALLAH for his great mercy supporting me all over the thesis.

I would like to express my deep sense of respect and gratitude towards my advisors and guides, Prof. Dr. Adel Y. Akl and Prof. Dr. Osman M. Ramadan for their continuous support, advice, and guidance throughout my work.

I would like to express my deep gratitude to my passed grandmother Mrs. Fawzeya El Gishi for her love and support throughout all my life.

I would like to thank my parents, who have been the source of my strength and encouragement throughout this journey.

I would also like to thank my fiancee (wife to be) Eng. Safaa Zeinhom for her love, understanding, encouragement and believing in me throughout my work in this thesis.

I'm thankful to my brother and my sister for their help and encouragement throughout this thesis. I must thank all my friends for giving me help and support throughout my work, especially, Eng. Mohammed Gouda and Eng. Ali Darwish.

Table of Contents

ACKNOV	VLEDGMENTS	I
TABLE (OF CONTENTS	II
LIST OF	TABLES	IV
LIST OF	FIGURES	V
ABSTRA	CT	XVIII
СНАРТЕ	R 1: INTRODUCTION	1
1.1.	General	1
1.2.	PREDICTION AND MEASURING METHODS	2
1.3.	STATEMENT OF RESEARCH.	4
1.4.	RESEARCH OBJECTIVES	4
1.5.	THESIS ORGANIZATION	5
СНАРТЕ	R 2 : BACKGROUND	6
2.1.	DEFORMATION OF CONCRETE	6
2.1.1.	Elastic deformation	7
2.1.2.	Factors affecting elastic deformation	7
2.1.3.	Shrinkage deformation	8
2.1.4.	Factors affecting shrinkage deformation	8
2.1.5.	Creep deformation	
2.1.6.	Factors affecting creep deformation	9
2.2.	COLUMN AXIAL SHORTENING	
2.2.1.	Components of diffrential axial shortening	
2.2.2.	Compensation of diffrential axial shortening	
2.3.	CHANGE OF REINFORCING STEEL STRESS DUE TO AXIAL SHORTENING	14
CHAPTE	R 3: MODELS OF PREDICTING CREEP AND SHRINKAGE	15
3.1.	GENERAL	15
3.2.	CEB-FIP 1990	15
3.2.1.	Creep	15
3.2.2.	Shrinkage	16
3.3.	ACI 209R-92	17
3.3.1.	Creep	17
3.3.2.	Shrinkage	18
3.4.	EN 1992-1-1: 2004 (EC2)	20
3.4.1.	Creep	20
3.4.2.	Shrinkage	
3.5.	COMPARISON BETWEEN MODELS	23
3 5 1	Parameters affecting models	23

3.5.2.	Sensitivity parametric study	25
3.5.2	2.1. Magnitude of creep and shrinkage strains	26
CHAPTE	R 4: PROBLEM FORMULATION AND PROGRAM	
	PMENT	36
4.1.	PROBLEM FORMULATION	36
4.2.	PROBLEM DESCRIPTION	
4.2.	PROBLEM ALGORITHM	
4.3.1.	General input data	
4.3.1.	Column/wall input data	
4.3.2.	Model factors' calculation	
4.3.4.	Total elastic and creep shortening calculation	
4.3.5.	Elastic and creep shortening calculation at time of floor casting	
4.3.6.	Total shrinkage calculation	
4.3.7.	Shrinkage shortening calculation at time of floor casting	
4.3.8.	Final shortening calculation and charts preparation	
4.4.	CODING AND DEBUGGING	
4.5.	Program verification	
CHAPTE	R 5 : PARAMETRIC STUDY	70
5.1.	COLUMNS	70
5.1.1.	Effect of reinforcing steel ratio	70
5.1.2.	Effect of aspect ratio (t/b)	103
5.1.3.	Effect of concrete strength (f _{cu})	141
5.1.4.	Effect of rate of construction	185
5.2.	SHEAR WALLS	223
5.2.1.	Effect of reinforcing steel ratio	223
5.2.2.	Effect of length to thickness ratio (L/t)	231
5.3.	CORES	240
5.3.1.	Effect of reinforcing steel ratio	240
5.3.2.	Effect of core thickness	248
5.4.	DIFFERENTIAL AXIAL SHORTENING	255
5.5.	CHANGE OF REINFORCING STEEL STRESS	263
5.5.1.	Effect of reinforcing steel ratio	263
5.5.2.	Effect of concrete strength (f _{cu})	269
5.5.3.	Effect of rate of construction	272
CHAPTE	R 6 : SUMMARY, CONCLUSIONS AND RECOMMENDATION	ONS
	TURE STUDIES	
6.1.	SUMMARY	274
6.2.	CONCLUSIONS	
6.2.1.	Conclusions related to the behavior of columns	
6.2.2.	Conclusions related to the behavior of walls and cores	
6.3.	RECOMMENDATIONS FOR FUTURE STUDIES	
REFERE		270 277
- K-H.H.K-H.	INC. D.S.	7.11

List of Tables

Table 2.1: value of α and β	21
Table 3.1: value of kh	22
Table 3.2: Parameters considered in creep and shrinkage prediction models	24
Table 3.3: Reference and alternative parameters investigated	
Table 3.4 Predicted creep and shrinkage strains for reference parameters	
Table 3.5: Predicted creep strain after 8 months when a specific parameter was change	
	28
Table 3.6: Change of predicted creep strain after 8 months compared to reference	
values	28
Table 3.7: Predicted shrinkage strain after 8 months when a specific parameter was	
changed	32
Table 3.8: Change of predicted shrinkage strain after 8 months compared to reference	e
values	33
Table 4.1: Rectangular column input sheet - part 1 for a three-levels building	41
Table 4.2: Rectangular column input sheet - part 2 for a three-levels building	41
Table 4.3: Model factors sheet - part 1 (time of loads application)	43
Table 4.4: Model factors sheet - part 2 (creep factors)	44
Table 4.5: Model factors sheet - part 3 (shrinkage factors)	44
Table 4.6: General layout for total elastic and creep shortening calculation sheet for	
2 floors building	47
Table 4.7: Elastic and creep shortening before floor casting for a column in a three-	
floors building	50
Table 4.8: Model Total shrinkage shortening for a ten-levels building	52
Table 4.9: Shrinkage shortening before floor casting for a column in a four-levels	
building	54
Table 4.10: Final results for a ten-floors building after finishing construction	56
Table 4.11: Final results for a ten-floors building during construction	57
Table 4.12: Reinforcing steel stress in a ten-floors building	58
Table 4.13: The column data for each floor	
Table 4.14: The column data for each floor	62
Table 4.15: The wall data for each floor	
Table 6.1: Maximum percentages of increase in column shortening (%)	275

List of Figures

Figure 1.1: Elastic and inelastic shortening for a concrete column (Midas IT Technica	al
	1
Figure 1.2: Failure of wall panel due to differential axial shortening (Fintel, Ghosh	&
Iyengar [4])	
Figure 1.3: Vibrating wire gauges imbedded in concrete core (Kim & Cho[10])	
Figure 1.4: Typical view of a mechanical gauge (Moragaspitiya [11])	
Figure 2.1: Time variations of stress and strain in concrete. (Moragaspitiya [11])	
Figure 2.2: Stress-strain relationship for concrete. (Liu [18])	
Figure 2.3: Effect of axial shortening on cladding and pipes. (Boonlualoah [19])	
Figure 2.4: Effect of differential axial shortening between column and core. (Midas I	
Technical Seminar [8])	
Figure 2.5: The two stages of slab level compensation during construction (Midas IT	
Technical Seminar [8])	
Figure 3.1: Predicted creep strain after 8 months when specific parameters was changed	
	. 29
Figure 3.2: Percentage of creep strain after 8 months compared to reference values	. 30
Figure 3.3 Predicted shrinkage strain after 8 months when specific parameters was	
change	
Figure 3.4 Percentage of shrinkage strain after 8 months compared to reference value	
Figure 4.1: Flowchart of the major eight steps of the program	
Figure 4.2: General input data sheet	
Figure 4.3: Flowchart showing "General Input Data "step	. 40
Figure 4.4: Flowchart showing "Column/Wall Input Data" Step	. 42
Figure 4.5: Flowchart showing "Model Factors' Calculation" Step	. 45
Figure 4.6: Flowchart showing "Total Elastic and Creep Shortening Calculation" Step	
	. 48
Figure 4.7: Flowchart showing "Elastic and creep shortening calculation at time of flo	oor
casting" Step	
Figure 4.8: Flowchart showing "Total shrinkage shortening calculation" Step	
Figure 4.9: Flowchart showing "Shrinkage shortening calculation at time of floor	
casting" Step	55
Figure 4.10: shortening components before and after floor casting for a concrete	. 55
column in a forty-floors building	59
Figure 4.11: Reinforcing steel stress for a concrete column in a forty-floors building	
Eigens 4.12. Eleverheat for "Eigel chartering colorlation and charte managerica" Stan	
Figure 4.12: Flowchart for "Final shortening calculation and charts preparation" Step	
Eigen 4.12. Ogganli a langua la granica la familia de la grandica	
Figure 4.13: Overall column shortening before floor casting	
Figure 4.14: Overall column shortening after floor casting	
Figure 4.15: Overall total column shortening	
Figure 4.16: Overall wall shortening before floor casting	
Figure 4.17: Overall wall shortening after floor casting	
Figure 4.18: Overall total wall shortening	. 69

Figure 5.1: Shortening components before and after floor casting for a concrete column, No. of floors = 10, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14
days
days
days
Figure 5.5: Comparison among the overall shortening for concrete columns have different reinforcing steel ratio, No. of floors = 10, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.6: Shortening components before and after floor casting for a concrete column, No. of floors = 20, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.7: Shortening components before and after floor casting for a concrete column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.8: Shortening components before and after floor casting for a concrete column, No. of floors = 20, μ = 3%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.9: Shortening components before and after floor casting for a concrete column, No. of floors = 20, μ = 4%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.10 Comparison among the overall shortening for concrete columns have different reinforcing steel ratio, No. of floors = 20, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.11: Shortening components before and after floor casting for a concrete column, No. of floors = 30, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.12: Shortening components before and after floor casting for a concrete column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days.
Figure 5.13: Shortening components before and after floor casting for a concrete column, No. of floors = 30, μ = 3%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days.
Figure 5.14: Shortening components before and after floor casting for a concrete column, No. of floors = 30, μ = 4%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days.
Figure 5.15: Comparison among the overall shortening for concrete columns have different reinforcing steel ratio, No. of floors = 30, aspect ratio = 2, $f_{cu} = 40$ MPa, rate of construction = 14 days.
Figure 5.16: Shortening components before and after floor casting for a concrete column, No. of floors = 40, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days.

Figure 5.17: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days89
Figure 5.18: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 3%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
14 1
= 14 days
column, No. of floors = 40, μ = 4%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.20: Comparison among the overall shortening for concrete columns have
different reinforcing steel ratio, No. of floors = 40 , aspect ratio = 2 , $f_{cu} = 40$ MPa, rate
of construction = 14 days92
Figure 5.21: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days93
Figure 5.22: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.23: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 3%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days95
Figure 5.24: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 4%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days96
Figure 5.25: Comparison among the overall shortening for concrete columns have
different reinforcing steel ratio, No. of floors = 50, aspect ratio = 2, f_{cu} = 40 MPa, rate
of construction = 14 days97
Figure 5.26: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 1%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.27: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
•
Figure 5.28: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 3%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.29: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 4%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.30: Comparison among the overall shortening for concrete columns have
different reinforcing steel ratio, No. of floors = 60 , aspect ratio = 2 , $f_{cu} = 40$ MPa, rate
of construction = 14 days
Figure 5.31: Shortening components before and after floor casting for a concrete
column, No. of floors = 10, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
$= 14 \text{ days}. \qquad 105$
Figure 5.32: Shortening components before and after floor casting for a concrete
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days106

Figure 5.33: Shortening components before and after floor casting for a concrete
column, No. of floors = 10, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.34: Shortening components before and after floor casting for a concrete
column, No. of floors = 10, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
= 14 days.
Figure 5.35: Shortening components before and after floor casting for a concrete
column, No. of floors = 10, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.36: Comparison among the overall shortening for concrete columns have
different aspect ratio, No. of floors = 10, μ = 2%, f_{cu} = 40 MPa, rate of construction =
14 days
Figure 5.37: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
= 14 days111
Figure 5.38: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days112
Figure 5.39: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.40: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
J
Figure 5.41: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.42: Comparison among the overall shortening for concrete columns have
different aspect ratio, No. of floors = 20, μ = 2%, f_{cu} = 40 MPa, rate of construction =
14 days116
Figure 5.43: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
= 14 days117
Figure 5.44: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.45: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
J
Figure 5.46: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.47: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction
= 14 days121
Figure 5.48: Comparison among the overall shortening for concrete columns have
different aspect ratio, No. of floors = 30, μ = 2%, f_{cu} = 40 MPa, rate of construction =
14 days

Figure 5.49: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.50: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.51: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.52: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
· · · · · · · · · · · · · · · · · · ·
= 14 days
Figure 5.53: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction
= 14 days127
Figure 5.54 Comparison among the overall shortening for concrete columns have
different aspect ratio, No. of floors = 40, μ = 2%, f_{cu} = 40 MPa, rate of construction =
·
14 days
Figure 5.55: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.56: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days130
Figure 5.57: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.58: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.59: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction
= 14 days133
Figure 5.60: Comparison among the overall shortening for concrete columns have
different aspect ratio, No. of floors = 50, μ = 2%, f_{cu} = 40 MPa, rate of construction =
14.1
14 days
Figure 5.61: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 2%, aspect ratio = 1, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.62: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.63: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 2%, aspect ratio = 3, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.64: Shortening components before and after floor casting for a concrete
column, No. of floors = 60, μ = 2%, aspect ratio = 4, f_{cu} = 40 MPa, rate of construction
· · · · · · · · · · · · · · · · · · ·
= 14 days

column, No. of floors = 60, μ = 2%, aspect ratio = 5, f_{cu} = 40 MPa, rate of construction = 14 days
different aspect ratio, No. of floors = 60, μ = 2%, f_{cu} = 40 MPa, rate of construction = 14 days
different aspect ratio, No. of floors = 60, μ = 2%, f_{cu} = 40 MPa, rate of construction = 14 days
column, No. of floors = 10 , $\mu = 2\%$, aspect ratio = 2 , $f_{cu} = 30$ MPa, rate of construction = 14 days
= 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
= 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 50 MPa, rate of construction = 14 days
= 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 60 MPa, rate of construction = 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 60 MPa, rate of construction = 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 70 MPa, rate of construction = 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 70 MPa, rate of construction = 14 days
column, No. of floors = 10, μ = 2%, aspect ratio = 2, f_{cu} = 80 MPa, rate of construction = 14 days
= 14 days
different concrete strength, No. of floors = 10 , $\mu = 2\%$, aspect ratio = 2 , rate of construction = 14 days
,
Figure 5.74: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 30 MPa, rate of construction = 14 days
Figure 5.75: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction = 14 days
Figure 5.76: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 50 MPa, rate of construction = 14 days
Figure 5.77: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 60 MPa, rate of construction = 14 days
Figure 5.78: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 70 MPa, rate of construction = 14 days
Figure 5.79: Shortening components before and after floor casting for a concrete
column, No. of floors = 20, μ = 2%, aspect ratio = 2, f_{cu} = 80 MPa, rate of construction = 14 days
Figure 5.80: Comparison among the overall shortening for concrete columns have
different concrete strength, No. of floors = 20, μ = 2%, aspect ratio = 2, rate of construction = 14 days

Figure 5.81: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 30 MPa, rate of construction
= 14 days157
Figure 5.82: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.83: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 50 MPa, rate of construction
= 14 days
Figure 5.84: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 60 MPa, rate of construction
J
Figure 5.85: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 70 MPa, rate of construction
= 14 days
Figure 5.86: Shortening components before and after floor casting for a concrete
column, No. of floors = 30, μ = 2%, aspect ratio = 2, f_{cu} = 80 MPa, rate of construction
= 14 days162
Figure 5.87: Comparison among the overall shortening for concrete columns have
different concrete strength, No. of floors = 30, μ = 2%, aspect ratio = 2, rate of
construction = 14 days
Figure 5.88: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 30 MPa, rate of construction
= 14 days
Figure 5.89: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days
Figure 5.90: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 50 MPa, rate of construction
= 14 days
Figure 5.91: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 60 MPa, rate of construction
= 14 days167
Figure 5.92: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 70 MPa, rate of construction
= 14 days
Figure 5.93: Shortening components before and after floor casting for a concrete
column, No. of floors = 40, μ = 2%, aspect ratio = 2, f_{cu} = 80 MPa, rate of construction
= 14 days169
Figure 5.94: Comparison among the overall shortening for concrete columns have
different concrete strength, No. of floors = 40, μ = 2%, aspect ratio = 2, rate of
construction = 14 days
Figure 5.95: Shortening components before and after floor casting for a concrete
column, No. of floors = 50, μ = 2%, aspect ratio = 2, f_{cu} = 30 MPa, rate of construction
· · · ·
= 14 days
column, No. of floors = 50, μ = 2%, aspect ratio = 2, f_{cu} = 40 MPa, rate of construction
= 14 days172