

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer Engineering and Systems

Smart Maximum Power Point Tracking for Photovoltaic Systems

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer Engineering and Systems)

by

Ahmed Saeed Ahmed Darweesh

Master of Science in Electrical Engineering

(Computer Engineering and Systems)

Faculty of Engineering, Ain Shams University, 2017

Supervised By

Prof. Wahied Gharieb Ali Abdelaal

Dr. Bassem A. Abdullah

Cairo - (2017)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer and Systems

Smart Maximum Power Point Tracking for Photovoltaic Systems

by

Ahmed Saeed Ahmed Darweesh

Bachelor of Science in Electrical Engineering

(Computer Engineering and Systems)

Faculty of Engineering, University, year

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Sherif Ali Hammad Computer and Systems Engineering Dept. Ex. Minister of Scientific Research.	
Faculty of Engineering - Ain Shams University.	
Prof. Dr. Mohammed Ibrahim Mahmoud Emeritus Prof. Dr. in Industrial Electronics and Control Engineering Dept. Faculty of Electronics Engineering - Menoufia University.	
Prof. Dr. Wahied Gharieb Ali Abdelaal Computer and Systems Engineering Dept. Faculty of Engineering - Ain Shams University.	

Date: 20 July 2017

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Ahmed Saeed Ahmed Darweesh
Signature
Date: 20 July 2017

Researcher Data

Name : Ahmed Saeed Ahmed Darweesh

Date of birth : 14/06/1986

Place of birth : AL-Sharqiya

Last academic degree : Bachelor of Science in Electrical Engineering

Field of specialization : Computer Engineering and Systems

University issued the degree : HTI at 10th of Ramadan

Date of issued degree : 2008

Current job : Electrical Engineer at NANSC

Thesis Summary

One of the important factors to maximize the utilization and efficiency of any Photo-Voltaic (PV) system is the Maximum Power Point Tracking technique (MPPT). MPPT is specifically used to extract the maximum available power form the PV array, maximum power can be achieved by tracking the Maximum Power Point (MPP) using specialized algorithms. There are a lot of algorithms used for the MPPT, Perturb and Observe (P&O), and Incremental Conductance (INC) are the most common classic techniques that are used due to its simplicity in implementation but one of drawbacks of these algorithms is the cost of perturbations and oscillations at the steady state condition. For that reason we decide to turn into modern controllers. Fuzzy Logic Control (FLC) is one of the most robust and modern control techniques.

The work in this thesis illustrates the positive effect of the MPPT technique on the PV system. In addition, illustrating the theory of operation and simulating the behavior of both algorithms P&O and INC. The simulation work (using Matlab/Simulink) evaluates the algorithms under different operating conditions (temperature and solar irradiance) and showed that each algorithm has advantages over the other. P&O is the fastest to reach the MPP and to charge the battery but it can't retain the MPP as INC algorithm can do. Meanwhile INC can reach the MPP with lower perturbations, consequently lower switching rate, higher efficiency, and higher life time for the used components.

The simulation results of FLC showed that FLC has the best results under all atmospheric conditions except at low irradiance level. FLC is the most convenient method to get higher and smoother output power at lower switching rate. It can reach the maximum power faster, reduce the power losses, increase the system efficiency, reduce the overall costs because of its simplicity, can be adapted with atmospheric variations, and has the lowest oscillations around the MPP.

Keywords: PhotoVoltaic, MPPT, MPP, P&O, INC, FLC, Maximum Power, Irradiance, Atmospheric Temperature, DC-DC converter, Buck Converter.

Acknowledgment

I would like to express my gratitude toward my supervisor **Prof. Wahied Gharieb Ali Abdelaal** for his appreciated time, support, and effort. His experience was very important to complete this work. I have learnt a lot from his technical experience during the realization of this thesis. Although of all his responsibilities he gave me the necessary guidelines and support and he was care about this work.

I am also grateful to **Dr. Bassem A. Abdullah** for his continued instructions and valuable guidance. His valuable time, effort and contribution in this work are really appreciated.

Finally, I want to thank my family for the continued support, encouragement and motivation until I have finished this work.

Table of Contents

List of Figures	•••••	i
List of Tables		vii
List of Abbreviations	•••••	viii
List of Symbols		viii
Chapter 1. Introduction		1
1.1 Research Motivations		2
1.2 Thesis Objectives		5
1.3 Thesis Contribution	•••••	5
1.4 Document Organization		5
Chapter 2. Background and su	ırvey	6
2.1 Solar cell overview		6
2.2 Modelling and characteris	etics of PV module	7
2.2.1 Short circuit current	, open circuit voltage, and MPP	9
2.2.2 Fill factor (FF)		10
2.2.3 Temperature and irr	adiance effect	10
2.3 PV model validation		12
2.4 Parameters that affect the	PV system performance	15
2.4.1 PV panel type and e	fficiency	15
2.4.2 Maximum Power Po	oint Tracing (MPPT) algorithm	15
2.4.3 Inverter efficiency		16
2.5 MPPT overview		16
2.6 DC/DC converter and im	pedance matching	21

	2.7	Max	imum power point tracking algorithms	30
	2	2.7.1	Perturb and observe algorithm	30
	2	2.7.2	Incremental conductance algorithm	34
	2	2.7.3	Constant voltage method	40
	2.8	Oper	n research area	41
	2.9	Sum	mary	42
Cł	apte	r 3. Si	mulation results of Classic Algorithms	43
	3.1	The	advantage of using MPPT technique in a PV system	43
	3.2	Simu	ulation results of P&O and INC algorithm under	
		diffe	rent atmospheric conditions	45
	3	3.2.1	Simulation results of P&O and INC algorithms at	
			standard conditions; G=1000W/m² and T=25°C	47
	3	3.2.2	Simulation results of P&O and INC algorithms at	
			$G=1000W/m^2$ and $T=35^{\circ}C$	50
	3	3.2.3	Simulation results of P&O and INC algorithms at	
			$G=1000W/m^2$ and $T=15^{\circ}C$	52
	3	3.2.4	Simulation results of P&O and INC algorithms at	
			G=1200W/m ² and T=25°C	54
	3	3.2.5	Simulation results of P&O and INC algorithms at	
			G=800W/m ² and T=25°C	56
	3.3	Reco	orded Results	58
	3.4	Sum	mary	60
Cł	apte	r 4. Pı	roposed MPPT controller with fuzzy logic	61
	4.1	Fuzz	y logic controller for MPPT	63
	4.2	Mem	bership functions and rules for the FLC	65

4.	3 Summary	70
Chap	ter 5. Simulation results of the fuzzy logic MPPT	
contr	oller	71
5.	1 Simulation results of Fuzzy-Logic algorithm at standard	
	conditions; G=1000W/m ² and T=25°C	72
5.	2 Simulation results at G=1000W/m ² and T=35°C	73
5.	3 Simulation results at G=1000W/m ² and T=15°C	74
5.	4 Simulation results at G=1200W/m ² and T=25°C	75
5.	5 Simulation results at G=800W/m ² and T=25°C	76
5.	6 Recorded Results	77
5.	7 Summary	79
Chap	ter 6. Conclusion and future work	80
6.	1 Conclusion	80
6.	2 Future Work	81
Refer	ences	82

List of Figures

1.1	PV system without MPPT, and the PV I-V curve	3
1.2	PV system with MPPT, and the PV I-V curve	4
2.1	PV cell, module, panel, and array	6
2.2	Equivalent model for a PV cell	8
2.3	I-V and P-V characteristic curves of PV module at constant	
	temperature level and different irradiation levels	11
2.4	I-V and P-V characteristic curves of PV module at constant	
	irradiation level and different temperature levels	11
2.5	The behaviour of the PV model at standard condition	12
2.6	The PV behaviour of the model at lower irradiance level	13
2.7	The PV behaviour of the model at higher temperature level	14
2.5	Block diagram for a PV system with MPPT and DC/DC	
	converter	17
2.6	(a) P-V characteristics of PV array. (b) I-V characteristics of	
	PV array	18
2.7	Load is connected directly to the PV module	18
2.8	Voltage and current values when connecting a battery of 12V	
	directly to the PV module	19
2.9	DC/DC converter is connected between the PV panel and a	
	battery of 12V as a load for the PV	20
2.10	DC/DC buck converter	21
2.11	DC/DC buck converter at Ton interval	22

2.12	DC/DC buck converter at Toff interval, where inductor is the	
	main source for the load	23
2.13	DC/DC buck converter at Toff interval, where capacitor is the	
	main source for the load	23
2.14	PV array connected to a DC/DC buck converter	26
2.15	Ropt and Rload for DC/DC buck converter	27
2.16	Tracking regions of optimal resistance for buck and boost	
	converters	29
2.17	Flowchart of P&O algorithm	31
2.18	Behaviour of P&O algorithm under rapid changes in	
	insolation levels	33
2.19	Schematic diagram of the incremental conductance method	34
2.20	Location of MPP at different irradiance levels	37
2.21	Flowchart of the incremental conductance algorithm	38
3.1	(a) Battery current and voltage drop, (b) Battery SOC and	
	voltage curves when using MPPT technique with INC	
	algorithm	44
3.2	(a) Battery current and voltage drop, (b) Battery SOC and	
	voltage curves when no MPPT technique is used	44
3.3	Maximum power extracted from the PV (Ppv), duty cycle	
	variations to retain the MPP, and System Pout using P&O at	
	G=1000W/m ² and T=25°C	47
3.4	Maximum power extracted from the PV (Ppv), duty cycle	
	variations to retain the MPP, and System Pout using INC at	
	G=1000W/m ² and T=25°C	48

3.5	Ppv, duty cycle variations to retain the MPP, and System P _{out}	
	using P&O at $G=1000W/m^2$ and $T=35^{\circ}C$	50
3.6	Ppv, duty cycle variations to retain the MPP, and System P_{out}	
	using INC at G=1000W/m ² and T=35°C	51
3.7	Ppv, duty cycle variations to retain the MPP, and System P_{out}	
	using P&O at G=1000W/m ² and T=15°C	52
3.8	Ppv, duty cycle variations to retain the MPP, and System Pout	
	using INC at G=1000W/m ² and T=15°C	53
3.9	Ppv, duty cycle variations to retain the MPP, and System P_{out}	
	using P&O at G=1200W/m ² and T=25°C	54
3.10	Ppv, duty cycle variations to retain the MPP, and System P_{out}	
	using INC at G=1200W/m ² and T=25°C	55
3.11	Ppv, duty cycle variations to retain the MPP, and System Pout	
	using P&O at G=800W/m ² and T=25°C	56
3.12	Ppv, duty cycle variations to retain the MPP, and System P_{out}	
	using INC at G=800W/m ² and T=25°C	57
4.1	Fuzzy controller structure	61
4.2	Membership functions	62
4.3	Fuzzy logic controller	63
4.4	Inputs and output of the FLC	64
4.5	Membership functions of the first input E	65
4.6	Membership functions of the second input ΔE	65
4.7	Membership functions of the output ΔD	65
4.8	Surface viewer of the control rules	66
4.9	Simulink model of a PV system with FLC	66
4.10	Regions of the operating point according to the inputs	68

5.1	Simulink model for the FLC with inputs E and ΔE , and ΔD as	
	output	71
5.2	Maximum power extracted from the PV array (P_{pv}) and the	
	duty cycle variations to retain the MPP; at G=1000W/m ² and	
	T=25°C	72
5.3	System Pout at G=1000W/m ² and T=25°C	72
5.4	Maximum power extracted from the PV array (Ppv) and the	
	duty cycle variations to retain the MPP; at G=1000W/m ² and	
	T=35°C	73
5.5	System Pout at G=1000W/m ² and T=35°C	73
5.6	Maximum power extracted from the PV array (P_{pv}) and the	
	duty cycle variations to retain the MPP; at $G=1000W/m^2$ and	
	T=15°C	74
5.7	System Pout at G=1000W/m ² and T=15°C	74
5.8	Maximum power extracted from the PV array (Ppv) and the	
	duty cycle variations to retain the MPP; at G=1200W/m ² and	
	T=25°C	75
5.9	System Pout at G=1200W/m ² and T=25°C	75
5.10	Maximum power extracted from the PV array (Ppv) and the	
	duty cycle variations to retain the MPP; at G=800W/m ² and	
	T=25°C	76
5.11	System Pout at G=800W/m ² and T=25°C	76

List of Tables

3.1	Tracking number of the MPP for both algorithms at different	
	atmospheric conditions	55
3.2	Count of duty cycle variations to retain the MPP when using	
	both algorithms at different atmospheric conditions	55
3.3	Settling time of both algorithms to reach the MPP at different	
	atmospheric conditions	56
3.4	Average output power of the system when using all	
	algorithms at different atmospheric conditions	56
3.5	Charging time of the battery when using both algorithms at	
	different atmospheric conditions	56
4.1	Rules of the proposed FLC	64
5.1	Tracking number of the MPP for all algorithms at different	
	atmospheric conditions	74
5.2	Count of duty cycle variations to retain the MPP when using	
	all algorithms at different atmospheric conditions	74
5.3	Settling time of both algorithms to reach the MPP at different	
	atmospheric conditions	75
5.4	Average output power of the system when using all	
	algorithms at different atmospheric conditions	75
5.5	Charging time of the battery when using all algorithms at	
	different atmospheric conditions	75