

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer and Systems Engineering

A Brain-Computer Interface Speller for Smart Devices

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

Computer and Systems Engineering

by

Mahmoud Ali Reda Mohammed Ahmed Helal

Bachelor of Science in Electrical Engineering
(Computer and Systems Engineering)
Faculty of Engineering, Ain shams University, 2010

Supervised By

Dr. Mohamed Taher

Dr. Seif Eldawlatly

Associate Professor Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University Assistant Professor Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Cairo - (2017)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering

A Brain-Computer Interface Speller for Smart Devices

by

Mahmoud Ali Reda Mohammed Ahmed Helal

Bachelor of Science in Electrical Engineering
(Computer and Systems Engineering)
Faculty of Engineering, Ain Shams University, 2010

Examiners' Committee

Name and Affiliation	Signature
Prof. Manal Abdel Wahed Abdel Fattah	
Biomedical Engineering and Systems Department	
Faculty of Engineering, Cairo University	
Prof. Mohamed Hassan Elshafie	
Computer and Systems Engineering Department	
Faculty of Engineering, Ain Shams University	
Dr. Mohamed Mahmoud Ahmed Taher	
Computer and Systems Engineering Department	
Faculty of Engineering, Ain Shams University	

Date:26 September 2017

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mahmoud Ali Helal
Signature
Date:26 September 2017

Researcher Data

Name : Mahmoud Ali Reda Helal

Date of birth : 11/11/1988

Place of birth : Cairo

Last academic degree : Bachelor

Field of specialization : Computer and Systems Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2010

Current job : Senior Software Developer

Thesis Summary

Brain—computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by its impressive applications. BCIs have the potential to enable severely disabled individuals to communicate with other people and to control their environment.

Motor imagery is currently one of the main applications of Brain-Computer Interface (BCI) which aims at providing the disabled with means to execute motor commands. One of the major stages of motor imagery systems is reducing the dimensions of the input data and enhancing the features prior to applying a classification stage to recognize the intended movement. We utilize autoencoders as a powerful tool to enhance the input features of the band power filtered electroencephalography (EEG) data. We compare the performance of the autoencoder-based approach to using Principal Component Analysis (PCA). Our results demonstrate that using autoencoders with nonlinear activation function achieves better performance compared to using PCA. We demonstrate the effects of varying the number of hidden nodes of the autoencoder as well as the activation function on the performance. We finally examine the characteristics of the trained autoencoders to identify the features that are most relevant for the motor imagery classification task.

One of the main applications of BCIs is virtual keyboards (spellers). Hex-O-Spell is considered one of well known spellers based on motor imagery. Developing Hex-O-Spell for smart devices (smart phones, tablets, ...) can improve the quality of life of disabled individuals allowing them to be more independent. As part of this thesis, a Hex-O-Spell application was developed and examined on three different subjects.

Keywords: Brain-Computer Interface, BCI, Hex-O-Spell, Spellers, Autoencoder, Motor Imagery, EEG, Mobile Application

Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful

Thanks to Allah for giving me this patience and strength to complete this thesis, and to understand that every good and bad happened was the best to me

First and foremost, I would like to express my gratitude to my advisors Dr. Seif Eldawlatly and Dr. Mohamed Taher for the continuous support, patience, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

Second, I would like to thank my parents who taught me the value of hardwork and an education, my beloved wife for just exist in my life and my brother for the support he has provided me over the years

Finally, I need to thank Mohammed Shaaban for techincal guidance, Abd-Allah Ibrahim, Ahmed Hosni, Bassem Fargaly and Wessam for volunteering in earlier experiments. This accomplishment would not have been possible without them. Thank you.

Table of Contents

List of Figures	i
List of Tables	iii
List of Abbreviations	iv
List of Symbols	. v
Chapter 1 Introduction	. 1
1.1 Research Scope	. 1
1.2 Research Objectives	. 2
1.3 Research Contributions	. 2
1.3.1 Developing Methods for Motor Imagery	. 2
1.3.2 Introduce Autoencoder as a Dimensionality Reduction Method	. 3
1.3.3 Developing a Hex-O-Spell for Smart Devices	. 3
1.4 Thesis Organization	. 3
Chapter 2 Background	. 5
2.1 Human Brain Anatomy	. 5
2.2 Bain-Computer Interface	. 7
2.3 10-20 EEG Standard	. 8
2.4 Electroencephalography (EEG)	10
2.4.1 P300	10
2.4.2 SSVEP	11
2.4.3 ERD	13
2.5 Neural Oscillation Types	15
2.6 BCI Motor Imagery Model	17
2.7 Other Motor Imagery Methods	18
2.7.1 Common Spatial Patterns	18
2.7.2 Support Vector Machines	19
2.8 Cross-validation	19

2.9 BCI Applications	20
2.9.1 Spellers	20
2.9.2 Web Browsing	21
2.9.3 Wheelchair Control	22
2.9.4 Entertainment	23
2.10 BCI Applications for Mobile Devices	24
2.10.1 NeuroPhone System	24
2.10.2 BCI Messenger	25
2.10.3 RunApp and ImgView	26
2.11 Tools	28
2.11.1 GNU Octave	28
2.11.2 Android Studio	29
Chapter 3 Motor Imagery Recognition Techniques	30
3.1 Introduction	30
3.2 Pre-processing	30
3.3 Feature Extraction	32
3.4 Classification	32
3.4.1 Linear Discriminant Analysis	32
3.4.2 Naive Bayes Classifier	33
3.5 Results	34
3.5.1 Dataset	34
3.5.2 Evaluation	37
3.5.3 Frequency Bands	39
3.5.4 Classification	41
Chapter 4 Using Autoencoders for Dimensionality Reduction in Motor	
Imagery	43
4.1 Introduction	43
4.2 Motor Imagery Workflow	43

4.3 Autoencoder	44
4.4 Principal Component Analysis	47
4.5 Dimensionality Reduction Results	48
4.5.1 Autoencoder versus PCA using Optimal Parameters	48
4.5.2 AutoEncoder Results versus Results of the BCI Competition	49
4.5.3 Performance for Different Number of Dimensions	50
4.5.4 Performance of Linear versus Sigmoid Activation Functions	51
4.5.5 Analysis of AE Weights	52
Chapter 5 Developing a Motor Imagery Hex-O-Spell Application	54
5.1 Introduction	54
5.2 Hex-O-Spell Algorithm	54
5.3 Emotiv Headset	57
5.4 Hex-O-Spell Mobile Application	58
5.4.1 Application user manual	58
5.4.2 Application Structure Code	61
5.4.3 Motor Imagery Methods Implemented for Smart Devices	63
5.5 Experiment	64
5.5.1 Experiment Prerequisites	65
Chapter 6 Conclusions and Future Work	66
6.1 Conclusion	66
6.2 Future Work	67
Publications	69
References	70

List of Figures

Figure 2-1: Human Brain Structure [2]	5
Figure 2-2: brain lobes position in human brain[3]	6
Figure 2-3: 10-20 System Electrode Positions[9]	9
Figure 2-4: EEG Signal of one channel for one stimulus[12]	
Figure 2-5: P300 Speller GUI[14]	
Figure 2-6: EEG signal (Oz-Cz) acquired during visual stimulation with a	
frequency of 15 Hz and its frequency spectrum[16][16]	. 12
Figure 2-7: Bremen-BCI (SSVEP) speller[17]	. 13
Figure 2-8: ERD / ERS phenomena in channels C3 and C4 for left and rig	ght
imagery in band power (11-13) Hz	. 14
Figure 2-9: Raw signal for C3 and C4 for right hand and left hand motor	
imagery	. 14
Figure 2-10: AIRLab Speller based on Motor Imagery BCI[19]	. 15
Figure 2-11: Overview of the BCI Motor Imagery approach	. 18
Figure 2-12 : Cross-validation process	. 20
Figure 2-13: Nessi a web browser based on BCI[28]	. 22
Figure 2-14: Wheelchair controlled by BCIs[30]	. 23
Figure 2-15: Subject playing World of WarCraft PC game using BCI[33]] 24
Figure 2-16: Calling Tim using NeuroPhone Application[34]	. 25
Figure 2-17: (a) BCI Messenger in Chinese mode. (b) BCI messgenger in	
English mode[35]	. 26
Figure 2-18: (a) RunApp interface. (b) ImgView interface[36]	. 28
Figure 3-1: EEG Signal before and after pre-processing phase	. 31
Figure 3-2: Figure demonstrate sample signal for 4 classes (right hand, le	ft
hand, both feet, and tongue)	. 35
Figure 3-3: Time frame for each subject trial[45]	. 36
Figure 3-4: Validation results when using LDA and NBC classifers (mean	n ±
std)	. 42
Figure 4-1: Proposed dimensionality reduction and classification approac	h
	. 44
Figure 4-2 : Simple AE Neural Network architecture	. 45
Figure 4-3: Autoencoder-based Dimensionality Reduction	. 47