"Arylidene oxazolones as building blocks of some heterocycles of anticipated biological activity"

"A thesis submitted for the degree of master of science as a partial fulfillment for requirements of the master of science"

"David Shoukry Antoun"

Under supervision

"Prof. Dr. Ahmed Said Ahmed Youssef"

"Prof. Dr. Kamal Abdel Rahman Kandeel"

"Dr. Wael S. I. Abou El-Magd"

Arylidene oxazolones as building blocks of some heterocycles of anticipated biological activity

A Thesis for M. Sc. Degree in Organic Chemistry

Presented by

David Shoukry Antoun

(B. Sc. 2011)

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2014

Arylidene oxazolones as building blocks of some heterocycles of anticipated biological activity

A Thesis for M. Sc. Degree in Organic Chemistry

Presented by David Shoukry Antoun

(B. Sc. 2011)

Thesis Advisors	Thesis Approved
Prof. Dr. Ahmed Said Ahmed Youssef	
Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	
Prof. Dr. Kamal Abdel Rahman Kande	el
Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	
Dr. Wael S. I. Abou El-Magd	•••••
Associated Professor of Organic Chemistry, Faculty of Science, Ain Shams University	

Head of Chemistry Department

Prof. Dr. Hamed A. Y. Derbala

Contents

	Pages
(Acknowledgement)	
English Summary	i
Introduction	1
• Structure & properities of oxazolones	4
• Synthesis of oxazolone derivatives	7
• Reactions of oxazolones: Ring opening	24
• Ring opening followed by cyclization	31
• Addition reaction on exocyclic double bond	65
• Photo chemical reactions & formation of polymers	72
• Biological investigation.	74
Results and Discussion	
• Synthesis of arylidene oxazolones derivatives &	
their reactions with nitrogen nucleophiles	79
• Synthesis of the acid hydrazide derivatives	84
• Reactions with carbon nucleophile	88
• Reactions with α,β -unsatuared carbonyl compounds	112
• Reaction with aromatic aldehydes	126
• Some reactions on Schiff base	128
• Biological investigation	138
Spectroscopic Figures	
Experimental	141
References	179
Arabic Summary	Í

Acknowledgment

First of all, thanks to <u>Allah</u> for helping me to accomplish this work.

I would like to present my great thanks to my supervisor Prof. Dr. Ahmed Said Ahmed Youssef, Professor of Organic Chemistry, Faculty of Science, Ain Shams University; for his guidance, continuous interest, moral supports and encouragements. It was really a great opportunity for me to study under his supervision that I could learn a lot of things in the organic synthesis.

Also, I would like to express my sincere gratitude to Prof. Dr. Kamal Abdel Rahman Kandeel; Professor of Organic Chemistry, Faculty of Science, Ain Shams University; to follow the progress of the work with keen interest and guidance.

Also, I give my thanks and regards to Dr. Wael S. I. Abou El-Magd; Associated Professor of Organic Chemistry, Faculty of Science, Ain Shams University; for his generous supervision and continuous encouragement.

Finally, I would like to express my appreciation to my family, my friends, my colleagues in the chemistry department and all peoples who help me to finish this work.

Summary

Comparison study between the reactivity of 1,3-oxa-zolones bearing phenylmethylene- and/or 1,3-diphenyl-pyrazolylmethylene- groups at position-4 towards methyl 4-aminobenzoate and hydrazine hydrate was studied.

Fusion of oxazolones 4-phenylmethylene-2-phenyl-1,3-oxazole-5(4*H*)-one **29** and 4-((1,3-diphenyl-1*H*-pyrazol-4-yl) methylene) -2-phenyl-1, 3-oxazole-5(4*H*)-one **34** with methyl 4-aminobenzoate on an oil bath gave the imidazolone derivatives **227a** and **227b**, respectively. Refluxing **227a** with hydrazine hydrate in methanol for 3h, gave the acid hydrazide derivative **228a**; as E-configurated isomer with a better yield together with a compound which was identical in all respects (m.p., mm.p. and TLC) with methyl 4-aminobenzoate. While the treatment of the imidazolone **227b** with hydrazine hydrate in dioxane for 20h, gave the triazinone derivative **229** (**Scheme 1**).

Ar
$$H_2N$$
 COOMe

(29) Ar = phenyl-
(34) Ar = 1,3-diphenylpyrazol-4-yl-

By the coom of th

Scheme 1

The treatment of **29** with hydrazine hydrate in refluxing ethanol afforded the E-configurated isomer hydrazide derivative **228a** (low yield). However, on doing the same reaction by stirring at room temperature, gave the Z-configurated isomer hydrazide derivative **228b** in a good yield. When Z-isomer **228b** was heated under reflux in ethanol or in pyridine, the isomeisation didn't occur. However, the isomerisation was happened upon heating an ethanolic solution of **228b** with prototype nucleophiles as, hydrazine hydrate or piperidine (**Scheme 2**).

On the other hand, when the pyrazol-3-yl-methylene oxazolone derivative **34** was treated with the hydrazine hydrate in refluxing ethanol, it afforded one isomer of the hydrazide derivative **230** in low yield. However, on doing the same reaction by stirring at room temperature, the same isomer was isolated but in a good yield (**Scheme 2**).

Scheme 2

Reactions of the acid hydrazide dervitatives **228a** and **230** with carbon nucleophiles such as: acetonylacetone, acetylacetone, ethyl acetoacetate and diethyl malonate were investigated.

N-pyrrolo derivatives **231a,b** were obtained upon treatment of the acid hydrazide derivatives **228a** & **230** with acetonylacetone in refluxing ethanol (**Scheme 3**).

Treatment of **228a** with acetylacetone in refluxing ethanol for 6h. gave the pyrazolyl derivative **232**. Similarly treatment of **230** with acetylacetone in refluxing ethanol gave a product which was proved by IR and ¹H-NMR spectra to be a mixture of oxazolone **34** and 3,5-dimethyl-pyrazole. While the reaction of **230** with acetylacetone for 3 h. gave the open chain compound **233** (Scheme 3).

Scheme 3

Heating of an ethanolic solution of **228a** with ethyl acetoacetate afforded the open chain adduct butanoate derivative **234**. On the other hand, ring closure of **230** occurred upon treatment **230** with ethyl acetoacetate. The six and five membered closed forms **235** and **236** were obtained, respectively (**Scheme 4**). Compound **235** found in two forms and it exists in solution in the lactim form.

Refluxing **228a** with ethyl acetoacetate in n-butanol solution in presence of drops of piperidine afforded the pyrazolone derivative **237a**. Similar treatment of **230** with ethyl acetoacetate under the same condition afforded a mixture of pyrazolidinone derivative **237b**, triazinone and imidazolone derivatives **235** and **236**, respectively (**Scheme 4**).

Treatment of the acid hydrazide **228a** with diethyl malonate gave the trioxopiperidine **239**. However, similar treatment of the hydrazide **230** with diethyl malonate, yielded a compound that was identical in all respects (m.p., mm.p. and TLC) with the imidazolone derivative **236** (**Scheme 4**).

Scheme 4

Treatment of 228a & 230 with diethyl acetylene-dicarboxylate gave the pyrazolone derivatives 240 and 241(Scheme 5). When 228a & 230 were treated with the arylidenemalononitriles in refluxing ethanol, they afforded

the N-substituted hydrazone derivatives **242** and **243** (Scheme 5).

Refluxing of **243a**, **b** with HCl/AcOH mixture afforded bis-(arylidene) hydrazine **244** in case of **243a** and triazinone derivatives **245** in case of **243b**, respectively (**Scheme 5**).

EtOOC-C=C-COOEt

$$(228a) \quad Ph \quad NHCOPh \quad H$$

$$(240) \quad Ph \quad (244) \quad Ph \quad COOEt$$

$$(229) \quad NHCOPh \quad H$$

$$(241) \quad MeO \quad NHCOPh \quad H$$

$$(241) \quad MeO \quad NHCOPh \quad Me$$

$$(228a) \quad Ar = phenyl-$$

$$(228a) \quad Ar = phenyl-$$

$$(228a) \quad Ar = phenyl-$$

$$(230) \quad Ar = 1,3-diphenylpyrazol-4-yl-$$

$$Cl \quad CH=C(CN)_2 \quad Ar \quad NHCOPh \quad H$$

$$(243a,b) \quad HCl/ACOH \quad H$$

$$(243a,b) \quad HCl/ACOH \quad H$$

$$(244a) \quad Ph \quad NH \quad NH$$

$$(244b) \quad NHCOPh \quad H$$

$$(245a) \quad NHCOPh \quad H$$

$$(245a) \quad NHCOPh \quad H$$

$$(245a) \quad NHCOPh \quad H$$

Scheme 5

The hydrazide **230** is easily condensed with aromatic aldehydes such as p-anisaldehyde in refluxing ethanol to give the Schiff base product **246** (Scheme 6) which exists as a mixture of two stereoisomers.