Effect of different modalities of sustained low-efficiency dialysis on Intradialytic hypotension in intensive care unit patients with acute kidney injury

Thesis

Submitted for fulfillment Master Degree

Internal Medicine

by

Reham Rabea Hassan

Under supervision of

Prof. Dr

Iman Ibraheim Sarhan

Professor of Internal Medicine and Nephrology

Faculty of Medicine-Ain Shams University

Dr.

Cherry Reda Kamel

Assisstant Professor of Internal Medicine and Nephrology
Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Acknowledgement

Thank to Allah

For accomplishment of this work

I wish to express my deepest gratitude to all those who assisted me to complete this work.

I am greatly indebted and grateful to **Prof. Iman Ibraheim Sarhan**, Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain ShaAms University, for her unlimited help and continuous insistence on perfection, without her constant supervision, this thesis could not have been achieved in its present form.

I would like to thank the sincere help, guidance and supervision of **Dr**.

Cherry Reda Kamel, Assistant Professor of Internal Medicine and Nephrology,

Faculty of Medicine, Ain Shams University, for her worthful suggestions and wise guidance created this thesis.

Last but not least, No words can express my affection and gratitude to my Family and my Friends for their support, assistance and belief in my work and in me,

Reham Rabea Hassan

Contents

Subject	Page No.
Introduction	1
Aim of The Work	4
Chapter 1: Acute Kidney injury	5
Chapter 2:Renal Replacement therapy in Acute	
Kidney injury	28
Chapter 3: Intradialytic hypotension	53
Deticate And Methods	74
Patients And Methods	83
Discussion	91
Summary and Conclusion	99
Limitations and Recommendations	102
References	103
Arabic Summary	

Zist of Abbreviations

Abb.	Full term
AAP	:Alanine Amino Peptidase
ABP	:Adinosine Deaminase Binding Protein
ADQI	:Acute dialysis quality initiative
AHF	:Acute heart failure
AKI	:Acute kidney injury
AKIN	:Acute kidney injury network
ALP	:Alkaline Phosphatase
Alpha-1M	:Alpha one Microglobulin
Alpha-GST	:Alpha Glutathione Transferase
ATN	:Acute Tubular Necrosis :Beta two Microglobulin
Beta-2M	.Beta two Microglobuini
BP	:Blood pressure
BUN	:Blood urea nitrogen
\mathbf{BW}	:Body weight
CBC	:Complete blood count
C GMP	: Cyclic Guanosine mono phosphate
CKD	:Chronic kidney disease
Cr	:Creatinine
CrCl	:Creatinine clearance
CRRT	:Continuos Renal Replacement Therapy
CVP	:Central venous pressure
CVS	:Cerebrovascular stroke
DDS	:Dialysis Disequilibrium Syndrome
DM	:Diabetes mellitus
DOPPS	:The Dialysis Outcomes and Practice Patterns Study
ESRD	:End stage renal disease
E GFR	:Estimated Glomerular Filtration Rate
EF	:Ejection fraction
FENA	:Fractional Ecxecretion of Sodium
FEUREA	: Fractional Ecxecretion of Urea
Gamma GT	:Gamma Glutamyl Transpeptidase
g/dL	:Gram per deciliter
	,

Abb.	Full term
g/L	:Gram per liter
Hb	:Hemoglobin concentration
HF	:Heart failure
HIT	:Heparin Induced Thrombocytopenia
HITT	:Heparin Induced Thrombocytopenia and Thrombosis
HRTE-1	:Proximal Renal Tubular Epithelial Antigen
HTN	:Hypertension
HUS	:Hemolytic Uremic Syndrome
ICU	:Intensive care unit
IDH	:Intradialytic Hypotension
IHD	:Intermittent Haemodialysis
IL-18	:Interleukin-18
IV	:Intravenous
IVIG	:Intravenous Immunoglobulin
JVP	:Jugular venous pressure
K	:Potassium
KDIGO	:Kidney disease improving global outcome
Kg	:Kilogram
KIM-1	Kidney Injury Moleccule-1
L	:Liter
LDH	:Lactate Dehydrogenase
MAP	:Mean arterial pressure
MDRD	:The Modification of Diet in Renal Disease
Mg	:Milligram
mg/kg	:Milligram per kilogram
Ml	:Milliliter
mm Hg	:Millimeter mercury
mmol/L	:Millimol per liter
Na	:Sodium
ng/ml	:Nanogram per milliliter
NAG	:N-acetyl-beta-D-glucosaminidase
NGAL	:Neutrophil gelatinase associated lipocalin
NHE	:Sodium Hydrogen Excange

Abb.	Full term
NKF	:National kidney foundation
NO	:Nitric Oxide
PICARD	:Program to Improvance in Acute Kidney Injury
Pi-GST	:Pi Glutathione Transferase
RBF	:Renal blood flow
RBP	:Retinal Binding Protein
RRT	:Renal Replacement Therapy
RIFLE	:Risk, Injury, Failure, Loss of Kidney Function, and End-stage
	Kidney Disease
SCA	:Sudden cardiac arrest
S.cr	:Serum creatinine
SLED	:Sustained Low Effeciency Dialysis
SOAP	: The Sequential Organ Failure Assessment
TTP	:Thtombotic Thrombocytopenic Purpura
Ucr	:Urine Creatinine
Pcr	:Plasma Creatinine
U pre	:Urea Predialysis
Upost	:Urea Postdialysis
VF	:Ventricular Fibrillation
VT	:Ventricular Tachycardia

\mathcal{I} ist of Tables

Table No	Title	Page
	Review of literature	
Table (1)	RIFLE criteria	6
Table (2)	AKIN CRITERIA	8
Table (3)	Prevention and management of IDH	
Table (4)	Different Definitions of Dry Weight in	
	Dialysis Patients	57
Table (5)	Different dialysate sodium concentration and	59
	Profiling	39
Table(6)	Concentrations of dialysate components used	70
	in hemodialysis	
	Subjects and mehods	
Table (7)	Respiratory System score	77
Table (8) Table (9)	Nervous System score	77
Table (9)	Cardiovascular System score	78
Table (10)	Liver score.	78
Table (11) Table (12)	Coagulation score	78
1 able (12)	Renar System score	79
	Results	
T-LL (12)	Demographic data of 10 patients with AKI	
Table (13)	on SLED therapy	83
Table (14)	Comorbidities of 10 patients with AKI on	
	SLED therapy	84
Table (15)	AKI classification of 10 patients with AKI	
T. 11. (16)	on SLED therapy	85
Table (16)	Laboratory data before starting SLED	
	therapy of 10 patients with AKI	85

Table No	Title	Page
Table (17)	Comparison of Urea, Creatinine, NA,CVP and blood pressure before and after SLED sessions in the 3 modules	86
Table (18)	Comparison between different modules regards: Ultrafiltration Volume, Number of hypotensive episodes, Inotropes, URR, Serum Creatinine, Serum NA, CVP and blood pressure	•
	\mathcal{I} ist of Figures	
Figure No	Z ist of Figures Title	Page
Figure No		Page
Figure (1)	Title	Page
Figure (1)	Title Results Gender of 10 patients with AKI on SLED therapy	Page
	Title Results Gender of 10 patients with AKI on SLED therapy AKI classification of 10 patients with AKI	84
Figure (1)	Title Results Gender of 10 patients with AKI on SLED therapy	

Introduction

Introduction

Acute kidney injury definition based on Kidney Disease Improving Global Outcomes (KDIGO) consensus guidelines which build on RIFLE criteria(Risk ,Injury , Failure ,loss and End-stage kidney disease) and the AKIN criteria (Acute Kidney Injury Network) is the increase in serum creatinine level of 0.3 mg per deciliter (26.5 µmol per liter) or more within 48 hours; a serum creatinine level that has increased by at least 1.5 times the baseline value within the previous 7 days; or a urine volume of less than 0.5 ml per kilogram of body weight per hour for 6 hours (Khwaja., 2012).

Acute kidney injury (AKI) has multiple possible etiologies. Among hospitalized patients, AKI is most commonly due to acute tubular necrosis (ATN) from ischemia, nephrotoxin exposure or sepsis, other frequent causes of AKI among either ambulatory or hospitalized patients include volume depletion, urinary obstruction, rapidly progressive glomerulonephritis, and acute interstitial nephritis (Nash et al., 2002).

Acute tubular necrosis is the most common cause of hospital-acquired acute kidney injury and usually results from ischemic or nephrotoxic injury to the tubules. In the ICU, acute tubular necrosis is usually multifactorial and may develop from a combination of sepsis, impaired renal perfusion, and nephrotoxic medications (Schrier et al., 2004).

There is no specific medical treatment for AKI so management is largely supportive. Renal-replacement therapy (RRT) is the mainstay of supportive treatment of patients with severe acute kidney injury; RRT use is required in