Contribution of Vitamin D Insufficiency to the Pathogenesis and Prognosis of Multiple Sclerosis

Essay

Submitted for Partial Fulfillment of Master degree in Neuropsychiatry

By

Lobna Abd El Azeem Mahmoud El Mohandess

M.B., B.Ch.
Faculty of Medicine- Ain Shams University

Supervised by:

Prof. Dr. Samia Ashour Mohammed

Professor and Head of Neuropsychiatry Department Faculty of Medicine – Ain Shams University

Prof. Dr. Azza Abd El Nasser Abd El Azizz

Professor of Neurology
Faculty of Medicine – Ain Shams University

Dr. Dina Abd El Gawad Zamzam

Assistant Professor of Neurology Faculty of Medicine – Ain Shams University

> Ain Shams University Faculty of Medicine 2015

Acknowledgement

First of all, my great thanks for **ALLAH**, the Most Merciful, the Most Gracious, for giving me courage, health and patience to undertake and accomplish this essay and for all his blesses on me in my life.

I would like to express my deepest thanks, gratitude and respect to my great **Prof. Dr. Samia Ashour Mohammed,** Professor and Head of Neuropsychiatry Department, Faculty of Medicine – Ain Shams University, for her creative ideas and constant supervision throughout the performance of this work. I had the honor to complete this work under her supervision.

Words fail to express my profound thanks and sincere gratitude to **Prof. Dr. Azza Abd El Nasser Abd El Azizz,**Professor of Neurology, Faculty of Medicine – Ain Shams University, for her generous advices, continuous encouragement, unlimited help and continuous guidance throughout this work.

I can't forget to thank with all appreciation **Dr. Dina Abd El Gawad Zamzam,** Assistant Professor of Neurology, Faculty of Medicine – Ain Shams University, for her great efforts and time she has devoted for this work.

Finally, I will never forget the sincere encouragement and great help of my **FAMILY** throughout my life journey.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vi
Introduction	1
Aim of the Work	4
Chapter (1): Epidemiology of Multiple Sclerosis	5
Chapter (2): Pathogenesis of Multiple Sclerosis	16
Chapter (3): Physiology of vitamin D	32
Chapter (4): Role of vitamin D in the Pathogenes MS	
Chapter (5): Role of Vitamin D in Prevention and Prognosis of MS	
Discussion	99
Summary	107
Conclusion	111
Recommendations	114
References	116
Arabic Summary	<u> —</u>

List of Abbreviations

Abbrev. Full term ALS : Amyotrophic lateral sclerosis APC : Antigen presenting cell CD : Cluster of differentiation CIS : Clinically isolated syndrome CNS : Central nervous system **CSF** : Cerebrospinal fluid **DBD** : DNA binding domain EAE : Experimental allergic encephalomyelitis EBNA1 : EBV nuclear antigen 1 **EBV** : Epstein-Barr virus : Expanded disability status scale **EDSS** : Efficacy of vitamin D supplementation in **EVIDIMS** multiple sclerosis FasL : Fas ligand : Familial multiple sclerosis **FMS GM-CSF** : Granulocyte-macrophage colony stimulating factor **GM-CSF** : Granulocyte-macrophage colony-stimulating factor **GWAS** : Genome-wide association study HLA : Human leukocyte antigen ICAM-1 : Intracellular adhesion molecule 1 **IFN** : Interferon \mathbf{IL} : Interleukin **IMT** : Immunomodulatory therapy

List of Abbreviations (Cont.)

Abbrev. Full term : Ligand binding domain **LBD** LFA-1 : Lymphocyte function-associated antigen 1 **MBP** : Myelin basic protein : Monocyte chemotactic protein **MCP MHC** : Major histocompatibility complex **MMps** : Matrix metalloproteinases **MOG** : Myelin oligodendrocyte glycoprotein : Magnetic resonance imaging **MRI** MS : Multiple Sclerosis NAA : N-acetyl aspartate NO : Nitric oxide **OLG** : Oligodendrocyte PC : Parental consanguinity PGE2 : Prostaglandin E₂ : Progressive relapsing MD **PRMS** : Randomized, controlled trials **RCTs RRMS** : Relapsing remitting MS SD : Standard deviation **SPMS** : Secondary progressive MS **TCR** : T cell receptors TH : T helper cells : Toll-like receptors TLR **TNF** : Tumor necrosis factor

List of Abbreviations (Cont.)

Abbrev. Full term

UVB : Ultraviolet B

VCAM : Vascular cell adhesion molecules

VCAM-1: Vascular cell adhesion molecule 1

VDR : Vitamin D receptor

VDRE : Vitamin D response element

VLA-4 : Very late antigen-4

WHO: World Health Organization

List of Tables

Table No.	Title	Page No.	
Table (1):	Overview of available vit preparations, their characteristic indication, side effects and costs.	es, typical	
Table (2):	Dietary sources of vitamin D	53	
Table (3):	Association studies analysing the 25-OH-D serum level and the relapse rate in patients with relapsing–remitting multiple sclerosis 89		
Table (4):	Clinical trials on vitamin D in sclerosis	-	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Expanded disability status scale	8
Figure (2):	Multiple sclerosis risk by two m periods of birth, with monthly average daily ambient ultraviolet radiation in trimester of pregnancy on inverse scale	es of first
Figure (3):	Geographical distribution of MS	15
Figure (4):	Diagram of immune system role multiple sclerosis pathogenesis	
Figure (5):	Impact of cytokines on oligodendroc (OLGs) and demyelination in mul sclerosis (MS)	tiple
Figure (6):	Overview of the components of immune system that are involved pathogenesis in MS	l in
Figure (7):	Schematic representation of mul sclerosis (MS) pathophysiology indepoints of treatment intervention	icate
Figure (8):	Structure of vitamin D3 (cholecalcife and vitamin D2 (ergocalciferol) and precursors	their
Figure (9):	Metabolism of vitamin D.(3) (Vitamin is hydroxylated in the liver to 25-hyd vitamin D by cytochrome P450	roxy
Figure (10):	Vitamin D Metabolism and Physiology	7 36
Figure (11):	Genomic and non-genomic response VDR binding to 1,25(OH)2D	

List of Figures (Cont.)

Figure No.	Title	Page No.
Figure (12):	Primary structure of the VDR	39
Figure (13):	Schematic representation of one hypothetical immunomodulatory eff vitamin D (through calcitriol)	ects of
Figure (14):	Modulation of multiple sclerosis ris conception to the time of triggering.	disease
Figure (15):	Example of evolution of relapse incrate ratio according to the 25-OH-D level in patients with MS	serum

List	of	Figures

Introduction

ultiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. The etiology of MS is unknown. It likely results from complex interaction between environmental and genetic factors (*Tullman*, 2013).

Multiple sclerosis is considered a T cell mediated autoimmune disease of the central nervous system (CNS) that mainly affects young adults and lead to significant neurological disability as it affects both white and gray matters of the CNS, its neuropathology lead to loss of myelin, oligodendrocyte complex as well as neuronal and axonal degeneration (*Franciotta and Tremolizzo*, 2013).

Low vitamin D status has been implicated in the etiology of autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, insulin-dependent diabetes mellitus, and inflammatory bowel disease (*Dorr et al.*, 2013).

Past sun exposure and vitamin D supplementation have been associated with a reduction in the risk of MS and the prevalence of MS was found to be highest where environmental supplies of vitamin D are lowest (*Hatamian et al.*, 2013).

Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The major role of vitamin D in the human body is commonly related to calcium metabolism and bone structure. Apart from this non- classical effects of vitamin D have recently gained renewed attention (*Yang et al.*, 2013).

Vitamin D has numerous functions in regulation of development and function. system The nervous neuroprotective effect of vitamin D is associated with its neurotrophin influence production and on release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue (Wrzosek et al., 2013).

Vitamin D metabolizing enzymes and vitamin D receptors are present in many cell types including various immune cells such as antigen-presenting-cells, T cells, B cells and monocytes, in addition to modulating innate immune cells vitamin D also promotes a more tolerogenic immunological status (*Prietl et al.*, 2013).

Vitamin D is a potent immune modulator, keeping the T-cell compartment in a more tolerogenic state. Multiple sclerosis (MS), a disease in which an autoreactive T-cell response contributes to inflammation in the central nervous system, has been associated with vitamin D deficiency. The

effects of vitamin D on the immune system are believed to be an important driver of this association (*Pierrot- Deseilligny and Souberbielle*, 2013).

Low serum vitamin D levels may increase the risk of developing MS and patients with established MS and lower vitamin D levels are at higher risk for subsequent relapse, new lesion on magnetic resonance imaging (MRI) and disability compared to patients with higher vitamin D levels (*Correale*, 2013).

Optimizing vitamin D levels have been shown to prevent a second demyelinating attack after a diagnosis of clinically isolated syndrome (CIS) or optic neuritis, which is an initial warning sign for MS. A dose of 20,000 IU of vitamin D3 once per week, alongside interferon beta-1b treatment, resulted in significantly fewer lesions on brain MRI, reduced disability scales and improved ability to walk (*Post and Ernst*, 2013).

Aim of the Work

The aim of this work is to review updates about correlation between vitamin D deficiency and multiple sclerosis development, prognosis and impact as a therapeutic factor.