

Design and Synthesis of Phthalazine Based Compounds as Possible Anticancer Agents

Thesis Presented by

Asmaa Mohamed AbouElmagd

BSc. In Pharmaceutical Sciences (June 2005)
MSc. in Pharmaceutical Sciences (Organic Chemistry) (September 2010)
Assistant Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy
Modern University for Technology & Information

Submitted for the partial fulfilment of the *PhD Degree*

In Pharmaceutical Sciences (Pharmaceutical Chemistry)

Under the supervision of

Prof. Dr. / Salwa Elsayed Mohamed Elmeligie

Professor & Head of Pharmaceutical Organic Chemistry Department
Faculty of Pharmacy, Cairo University &
Member of Technical Office for Higher Education, NAQAAE

Prof. Dr. / Khaled Abouzid Mohamed

Professor & Head of Pharmaceutical Chemistry Department
Faculty of Pharmacy, Ain Shams University

Dr. / Deena Samy Lasheen

Lecturer of Pharmaceutical Chemistry
Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy
Ain Shams University
2016

Acknowledgements

Firstly, I thank and praise **ALLAH** for helping me to complete this work.

I am profoundly indebted to **Professor Dr. Salwa Elsayed Mohamed Elmeligie**, Professor & Head of Pharmaceutical Organic Chemistry, Cairo University, for her kind supervision, continuous interest, constant guidance and support during all stages of this work. I really appreciate her continuous efforts, tremendous support, endless motivation and enthusiasm. I am truly and heartily grateful to her indispensible and fruitful opinion, real interest, trust, caring, eminent guidance and untiring help throughout the whole work and during writing the thesis. ProfessorDr. Salwa Elmeligie encouraged me and helped me alot to perform this study in its comprehensive final form.

I owe my deepest appreciation and truthful gratitude to **Professor Dr. Khaled Abouzid Mohamed Abouzid,** Professor of Pharmaceutical Chemistry Department, Ain Shams University, for his scientific supervision, innovative ideas, fruitful opinion, invaluable advices, precious suggestions, continuous encouragement and untiring help. I am really sincerely and profoundly indebted to him for his priceless guidance and endless support throughout the whole work and during writing this thesis. I truly thank him for his great efforts which allowed this thesis to appear in its final form.

I would like also to express my sincere thanks to **Dr. Deena Samy Lasheen**, Lecturer of Pharmaceutical Chemistry, Ain Shams University, for her kindness, continuous encouragement, indispensible assistance, valuable guidance and fruitful opinions throughout the whole practical work and during writing this thesis. I really thank her for her great efforts and tremendous support. My gratitude extends to her for her invaluable guidance and assistance all throughout the time spent in this thesis work.

I would like also to deeply thank **Dr. Tamer Ibrahim Abel-Ghany**, Lecturer of Pharmacology, Faculty of Pharmacy, AL-Azhar University, for his generous aid and his appreciated efforts in performing part of the biology work which really enriched this work.

I am profoundly indebted to **Prof. Dr. Aly Mahmoud Taha**, Professor of Pharmaceutical Chemistry Department, Faculty of Pharmacy, MTI University for his understanding, encouragement and support during this work.

I acknowledge with thankfulness all members in Pharmaceutical Chemistry Department, Ain Shams University for their friendly cooperation and their unconditional aid.

Also I would like to express my gratitude to the National Cancer Institute, Maryland, U.S.A for performing the in-vitro anticancer assay of the synthesized compounds.

My Family; for their endless patience and support all throughout the whole long way

The candidate got the Master degree in Pharmaceutical Sciences (Organic Chemistry), Faculty of Pharmacy, Cairo University, and the master thesis was equivalent by Council of Faculty of Pharmacy, Ain Shams University.

Besides the work presented in this thesis, the candidate successfully passed special PhD courses in Pharmaceutical Chemistry for one year during academic year 2011/2012 with the following grades:

1) Pharmaceutical Chemistry (2)	Very Good

2) Drug Stereochemistry Good

3) Drug Design Excellent

4) Selected Topics in Pharmaceutical Chemistry Good

Also, the candidate completed the comprehensive exam and the project required as pre -requisite for PhD Degree in the academic year 2012/2013.

Prof.Dr.Khaled Abouzid Mohamed

Professor & Head of Pharmaceutical Chemistry Department

Content

Acknowledgements	ii
Content	v
List of Figures:	viii
List of tables:	xi
List of Abbreviations:	xii
Abstract:	XV
1. Introduction	1
1.1. Cancer	1
1.1.1. Overview	1
1.1.2. Epidemiology	1
1.1.3. Causes of cancer	2
1.1.4. Cancer Hallmarks	3
1.1.5. Cancer Therapy	4
1.1.6. Targeted therapy	8
1.2. Protein Kinases	18
1.2.1. Overview	18
1.2.2. Tyrosine Kinases	18
1.2.3. Inhibitors of TKs with proangiogenic activity: VEGFR and related kinases	28
1.2.3.1. Angiogenesis & involved kinases	28
1.2.3.2.VEGFR inhibitors	32
2. Rationale and Design	40
2.1. Structure Activity Relationship (SAR) study	41
2.2. Design of novel 1,4-disubstituted phthalazine based VEGFR-2 inhibitor	rs and
apoptosis inducers	45
2.3. Preliminary evaluation of the designed compounds using molecular docking	;: 49
2.4. Synthetic schemes adopted to prepare the target compounds	52
3. Results and Discussion	56

	21 Char	nistry	56
		cheme 1a:	
		cheme 1b:	
		cheme 2:	
		cheme 3:	
	3.2. Bio	logical Evaluation	
	3.2.1.	In vitro kinase inhibitory activity	71
	3.2.2.	In vitro HUVEC Anti- proliferative assay	76
	3.2.3.	In vitro Antiproliferative activity against NCI 60-cell line	78
	3.2.4.	In vitro cytotoxic activity against MCF-7, HCT-116 & HepG-2 can	cer cell lines.
		97	
	3.2.5.	Cell-cycle analysis	98
	3.2.6.	Apoptosis determination	102
	3.2.7.	Effects of VIIb on the cellular and nuclear morphology	104
	3.2.8.	Effect of compound VIIb treatment on the expression level of clea	ved caspase-
	3	105	
	3.3. Mo	lecular modeling study	106
	3.3.1.	Docking study	106
4.	Conclu	sion	115
5.]	Experime	ental	117
5.1	. Chemis	try	117
	5.1.1. Mat	terials and instrumentation	117
!	5.1.2. Syn	thesis	118
	_	ological evaluation	
	5.2.1.	In vitro VEGFR tyrosine kinase activity	
	5.2.2.	In vitro HUVEC Anti-proliferative assay	
	5.2.3.	<i>In vitro</i> anti-proliferative activity against 60 cell line panel	
	5.2.4.	<i>In vitro</i> anti-proliferative activity against MCF-7, HCT-116 and H	
	cell line		160

	5.2.5.	Cell cycle analysis	163
	5.2.6.	Measurement of apoptosis using annexin-V-FITC apoptosis detection kit	163
	5.2.7.	Immunostaining and morphological studies	163
5	.3. Mo	lecular docking study	164
	5.3.1.	Protien preparation for docking	164
	5.3.2.	Ligand preparation for docking	165
	5.3.3.	Docking process	165
6.	Referei	1ces	166

List of Figures:

Figure 1:Causes of cancer	2
Figure 2: The main hallmarks of cancer	3
Figure 3: Current states of epigenetic targets for inhibitors	10
Figure 4: Definition of apoptosis.	12
Figure 5: Schematic representation of apoptotic events	13
Figure 6: Schematic representation of death receptor signaling	16
Figure 7: Conserved substructures within the consensus kinase fold involve	d in the
phosphoryltransfer from ATP to substrate	20
Figure 8: Schematic overview of available pockets in the catalytic cleft in both DFG-i	in (A) and
DFG-out (B) kinases	22
Figure 9: FDA-approved small-molecule kinase inhibitors (at April 2015)	22
Figure 10: Kinase inhibitor-protein interactions are depicted by ribbon structures	(left) and
chemical structures (right)	26
Figure 11 : Type III ligand binding region	27
Figure 12: Four types of reversible binding mode	28
Figure 13: The VEGF family and its receptor	29
Figure 14: Diagram of the inferred interactions between the human VEGF receptor 2	? protein–
tyrosine kinase catalytic core residues, ATP, and a protein substrate	30
Figure 15: VEGF signaling inhibitors and their targets	31
Figure 16: The ATP-binding cleft is located between the two lobes of the intracellula	r domain.
	42
Figure 17: Small-molecule kinase inhibitors binding to the vascular endothelial grov	vth factor
receptor (VEGFR)	43
Figure 18: Structures of VEGFR type II kinase inhibitors. Hydrogen bonds bet	ween the
inhibitor and the protein are shown with black dotted lines	44
Figure 19: Binding mode of sorafenib (19) to VEGFR-2 hinge region through	hydrogen
bonding and hydrophobic interaction	45

Figure 20: Strategy for the design of the target compounds
Figure 21: Mechanism of compound IX
Figure 22: The bar graphs showing the HUVECs growth percentage after treatment with the
target compounds7
Figure 23: Mean graph of compound (VIb) with colour codes for each cell line
Figure 24: Mean graph of compound (VIe) with colour codes for each cell line
Figure 25: Mean graph of compound (VIIb) with colour codes for each cell line
Figure 26: Mean graph of compound (XIIIa) with colour codes for each cell line
: Figure 27: Mean graph of compound (XIIIc) with colour codes for each cell line84
Figure 28: Mean graph of compound (XVIa) with colour codes for each cell line8
Figure 29: Mean graph of compound (XVId) with colour codes for each cell line80
Figure 30: Mean graph of compound (XVIIa) with colour codes for each cell line8
Figure 31: Effect of compound VIIb on DNA-ploidy flow cytometric analysis of MCF-7 cells. 100
Figure 32: Effect of compound XIIIc on DNA-ploidy flow cytometric analysis of MCF-7 cells
10
Figure 33: Effect of compound XVIa on DNA-ploidy flow cytometric analysis of HCT-116 cells
103
Figure 34. Effect of compound VIIb treatment on induction of apoptosis103
Figure 35: Effect of compound XIIIc treatment on induction of apoptosis103
Figure 36: Effect of compound XVIa treatment on induction of apoptosis104
Figure 37: Effect of compound VIIb on the cellular and nuclear morphology10
Figure 38. Effect of compound VIIb on Cleaved caspase-3 protein expression10
Figure 39: The X-ray structure of sorafenib in the binding site of VEGFR-2 (PDB: 4ASD).108
Figure 40: The best-scored docking pose of compound (VIc) in the binding site of VEGFR-
(4ASD)109
Figure 41: The best-scored docking pose of compound (XIIb) in the binding site of VEGFR-
(4ASD)109
Figure 42: The best-scored docking pose of compound (XIIc) in the binding site of VEGFR-
(4ASD) 109

List of figures

Figure 43: The best-scored docking pose of compound (XIIIc) in the binding site of VEGFR-
2 (4ASD)	110
Figure 44: The best-scored docking pose of compound (Vb)	in the binding site of VEGFR-2
(4ASD)	110
Figure 45: The best-scored docking pose of compound (VIIIc) in the binding site of VEGFR-
2 (4ASD)	111

List of tables:

Table 1: Docking energy and amino acids involved in the binding interactions of some of
the designed compounds
Table 2: The VEGFR-2 inhibition percent of the synthesized phthalazines (series A, B& C) at 10 μM concentration
Table 3: The VEGFR-2 inhibition percent of the synthesized phthalazines (series D, E, F) at 10 μM concentration
Table 4: Aurora A/AKT1 & EGFR kinase inhibition percent of the synthesized phthalazines at $10~\mu M$ concentration
Table 5: The IC ₅₀ values for compounds (VIc, XIIb, XIIc, XIIIc):
Table 6: The effect of compounds (XIIb, XIIc & XIIIc) on HUVEC proliferation
Table 7: <i>In vitro</i> NCI 60 cell line anticancer screening results of compounds (Vb, Vd, VIb, VIe, VIIb, VIIe, VIIIa, VIIId, VIIIf, VIIIg, VIIIh, VIIIi) at single dose of 10 μM presented as percent cell growth promotion
Table 8: <i>In vitro</i> NCI 60 cell line anticancer screening results of compounds (XIIIa, XIIIb, XIIIc, XVIa, XVId, XVIIa) at single dose of 10 μM presented as percent cell growth promotion
Table 9 : <i>In vitro</i> NCI 5 log dose results for compounds (VIb, VIe, VIIb & XIIIa) in μM against 60 cell panel94
Table 10: <i>In vitro</i> NCI 5 log dose results for compounds (XIIIc, XVIa, XVId & XVIIa) in μM against 60 cell panel95
Table 11: Cytotoxic activity of the new compounds against MCF-7, HCT-116 and HEPG-2 cancer cell lines
Table 12: The binding interactions of the docked compounds together with their binding

List of Abbreviations:

5-aza-CdR: 5-Aza-2'-deoxycytidine

5-aza-CR: 5-Azacytidine

ADDM: Azodicarbonyl dimorpholide **ALL**: Acute lymphoblastic leukemia.

Asp: Aspartate

ATP: Adenosine triphosphate

BAECs: Bovine aortic endothelial cells

Bcl-2: B-cell lymphoma-2

BET: Bromodomain and extraterminal domain family

Bim: Bcl2-interacting mediator of cell death – a membrane-bound "death ligand" inhibited

by Bcl2.

BPS: Bioscience Corporation **CDK**: Cyclin dependent kinase

c-FLIP: Cellular FLICE like inhibitory protein

CHARMm: Chemistry at Harvard macromolecular mechanics

CML: Chronic myeloid leukemia **CRD**: Cysteine-rich domains

CrK: Creatine kinase **DD**: Death domain **DFG**: Asp-Phe-Gly

DMF:DimethylformamideDMSO: Dimethyl sulfoxideDNA: Deoxyribonucleic acidDNMT: DNA methyltransferase

DTP: Development therapeutic program

EC: Endothelial cells

EGFR: Epidermal growth factor receptor

ER: Estrogen receptor

Fas: Fragment, apoptosis stimulating. Fas is actually a cell receptor.

FDA: Food and Drug Administration

FGF: Fibroblast growth factor

FGFR-1: Fibroblast growth factor receptor 1

FITC: Fluorescin isothiocyanate

FLT-4: fms related tyrosine kinase 4

GI₅₀: 50%Growth inhibition concentration;

HCC: Hepatocellular carcinoma **HCC**: Hepatocellular carcinoma

HDAC: Histone deacetylases

HRD: His- Arg-Asp

Hrs: hours

HTS: High-throughput screening

HUVEC: Human umbilical vein endothelial cells

Hz: Hertz

IAPs: Inhibitor of apoptosis

IC₅₀: Half-maximal inhibitory concentration **IC**₅₀: Half-maximal inhibitory concentration

KAT: Histone acetyltransferases **KDM**: Histone demethylases

KDR: Kinase insert domain receptor **KMT**: Histone methyltransferases **L2987**: Lung agenocarcinoma cells.

MAPK: Mitogen-activated protein kinase

MD: Molecular dynamics

MDAMB-231: Breast adenocarcinoma **MET**: Hepatocyte growth factor receptor

MHz: Mega hertz Mmol: Millimole

m-RNA: Messenger ribonucleic acid

MS: Mass spectroscopy

NCI: National Cancer Institute

NF-κB: Nuclear factor κ-light-chain-enhancer of activated B cells

NIH: National Institutes of Health
NMR: Nuclear magnetic resonance
NRTK: Non-receptor tyrosine kinase
NSCLC: Non small cancer lung cancer
PD-1: Programmed cell death protein 1

PDB: Protien data bank

PDGFR: Platelet derived growth factor receptor.

PGF: Placental Growth Factor

Ph+: Philadelphia chromosome-positive

PI: Propidium iodide

PIGF: Placental growth factor **PPB**: Plasma protein binding **PR**: Progesterone receptor **PS**: Phosphatidylserine

Pt NWs: Platinum nanowires

Raf-1: v-Raf murine sarcoma viral oncogene

Ras: Rat sarcoma

RCC: Renal cell carcinoma

RET: Rearranged during transfection (Proto-oncogen).

RMSD: Root mean square deviation

RNA: Riboneucleic Acid **rt**: Room temperature

RTKs: Receptor tyrosine kinase. **SAR:** Structure activity relationship

Smac/DIABLO: Second mitochondria-derived activator of caspase/direct inhibitor of

apoptosis-binding protein with low pI

SRC: Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene

T315I: Threonine being substituted by Isoleucine at that position

TEA: Triethyl amine **THF**: Tetrahydrofuran

Tie-2: Tyrosine kinase with immunoglobulin-like and EGF-like domains.

TK: Tyrosine kinase

TLC: Thin layer Chromatography

TNF: Tumor necrosis factor *TP53*: Tumor protein 53

TRAIL: TNF-related apoptosis-inducing ligand

VEGF: Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor receptor

VEGFR-2: Vascular endothelial growth factor receptor-2