Customized Versus Conventional Laser in situ Keratomileusis

Essay
Submitted for Partial Fulfillment of Master Degree
In Ophthalmology

By
Radwan Mohsen Mohammed AL-Esayi
(M.B.,B.Ch.)
Aden University -

Supervised by

Prof .Dr .Mervat Salah Mohammed Mourad

Professor of Ophthalmology

Faculty of Medicine

Ain Shams University

Dr .Mohammed Hanafi Hashem

Lecturer of Ophthalmology

Faculty of Medicine

Ain Shams University

Faculty of Medicine Ain Shams University Cairo, 2011

الليزك المخصص مقابل الليزك التقليدي

مقال مقدم تمهيدا للحصول على درجة الماجستير في طب و جراحة العيون

<u>من</u>

الطبيب/ رضوان محسن محمد العيسائي بكالوريوس الطب و الجراحة كلية طب عدن

تحت اشراف

الأستاذه الدكتوره/ مرفت صلاح محمد مراد أستاذه العيون أستاذه طبو جراحة العيون كلية طب عين شمس

الدكتور/ محمد حنفي هاشم مدرس طب و جراحة العيون كلية طب عين شمس

كلية الطب جامعة عين شمس 2011

CONTENTS

Table of Abbreviations	1
Table of Figures	2
List of Tables	4
Introduction and Aim of the Work	5
(1) Aberrations	10
(2) Aberrometers	35
(3) Lasik	48
(4) Customized versus conventional lasik	53
Summary	75
References	78
Arabic summary	

ABLE OF ABBREVIATIONS

μm	Micrometer
BCVA	Best corrected visual acuity.
CATz	Customized aspheric treatment zone
CCD	Charge couple device.
CS	Contrast sensitivity.
CXL	Collagen crosslinking
FC	Fractional clearance.
FDA	Food and drug administration.
HOA	Higher order aberrations
LASIK	LASER in situ keratomileusis.
LOA	Lower order aberrations.
MTF	Modulation transfer function.
nm	Nanometer
OATz	Optimized aspheric transition zone
OZ	Optical zone.
PD	Pupil diameter.
PRK	Photorefractive keratectomy
PSF	Point spread function.
RMS	Root mean square.
RMSH	High order Root-Mean-Square.
SRR	Spatial resolved refractometer
UCVA	Uncorrected visual acuity.
WFG Lasik	Wavefront guided Lasik
ZAR	Zyoptix ablation refinement software.

TABLE OF FIGURES

Figure no.	Title	Page no.
1	Chromatic aberration	11
2	Spherical aberrations	12
3	Coma aberration	13
4	Curvature of field	14
5	Astigmatism	14
6	Image distortion	15
7	Light from a distant point source will form a parallel bundle of rays	16
8	The aberrated wavefront	17
9	Ideal emmetropic eye with plane wavefront.	18
10	Wavefront aberration	19
11	The actual wavefront to the ideal wavefront	20
12	Wavefront mode for each Zernike polynomials	22
13	Graphical representation of root mean squared wavefront error	23
14	Wave aberration RMS	25
15	PSF is light intensity map	26
16	The PSF for increasing pupil sizes in a perfect eye	26
17	PSF from Zernike modes	29

18	Pictorial definition of the Strehl ratio	30
19	Effects of diffraction and defocus on MTF	32
20	Auto-correlation	33
21	Fourier Transform	33
22	Pictorial explanation of the convolution operation	34
23	Outgoing" Reflective Aberrometry (Shack-Hartmann Device)	39
24	Small segment of the wavefront passing through a single lenslet	40
25	Concept of "Retinal Imaging" Aberrometry (Tscherning Device)	42
26	Principles of Tscherning aberrometry	42
27	Ray Tracing aberrometer	44
28	Ingoing" Adjustable Aberrometry (Spatially Resolved Refractometer)	45
29	Principles of spatially resolved refractometry	46
30	Principles of slit skiascopy used in the Nidek OPDScan	47
32	The four steps for LASIK	48
33	Procedures of Femto-LASIK	49
34	Summary of the clinical course of the right eye of a patient with post-LASIK ectasia	64

LIST OF TABLES

Table no.	Table title	Page no.
1	Categorical listing of commercial wavefront devices	37
2	FDA-approved indications for excimer laser .	51-52
3	Published Results for Treatment of Decentered Ablation	69

INTRODUCTION

Laser in situ keratomileusis (LASIK) was initially reported by Pallikaris et al in 1990 and has become an efficient and commonly performed procedure in refractive surgery. However, a decrement of visual performance after the surgery has been reported, such as glare and halo under dim conditions, poor night vision and decrease of contrast sensitivity values (*Pallikaris et al, 1990*).

Therefore wavefront-guided LASIK were introduced to provide a solution of low vision quality related to laser ablations (McDonald, 2000).

This technique tended to facilitate better visual outcome by reducing or eliminating existing ocular aberrations. The worldwide application of conventional ablation in LASIK aroused general concern on whether there are differences in visual outcome and high order aberration when comparing conventional ablation LASIK with customized ablation (*Phusitphoykai et al.*, 2003).

Wavefront technology can measure most of the lowerand higher-order aberrations of the eye (*Liang*, 1994).

Wavefront-guided (WFG) LASIK, also called custom LASIK, is a variation of the surgery in which the excimer laser is instructed to ablate a sophisticated pattern based on measurements from an aberrometer.

INTRODUCTION AND I IM OF THE WORK

This is distinct from 3 other basic types of excimer laser treatment profiles: conventional, wavefront optimized, and topography guided.

Wavefront-guided

Ablation offers the potential advantage of better visual quality because of treatment of higher-order aberrations. When compared with conventional excimer laser ablation, wavefront-guided ablation appears to offer better contrast acuity and less induction of postoperative higher-order aberrations. However, patients undergoing wavefront-guided ablation may still have more higher-order aberrations postoperatively than they did preoperatively (American Academy of Ophthalmology, 2008).

Conventional LASIK

Also called standard LASIK, was the first profile to receive Food and Drug Administration (FDA) approval and still is used commonly today. Conventional LASIK applies a simple spherocylindrical correction based on the removal of tissue using Munnerlyn's equation (Munnerlyn, 1988).

Conventional excimer laser ablation treats lower-order or spherocylindrical aberrations such as myopia, hyperopia, and astigmatism. These lower-order aberrations comprise approximately 90% of all aberrations, with higher-order aberrations making up the remainder. Higher-order aberrations are also a by-product of excimer laser ablation. Some higher-order aberrations can cause symptoms such as loss of contrast sensitivity and nighttime haloes and glare, decreasing the

quality of vision (American Academy of Ophthalmology, 2008).

Wavefront-optimized

LASIK is a treatment profile designed to reduce or eliminate the induced spherical aberration of conventional LASIK (*El-Danasoury*, 2005). The wavefront-optimized treatment is based on a spherocylindrical correction that is adjusted by an internal algorithm to remove additional tissue in the periphery of the ablation zone, thereby creating a more prolate corneal shape.

Topography-guided

LASIK uses information from both the corneal shape and the spherocylindrical correction to determine the excimer laser ablation profile (*Knorz*, 2000).

Topography-guided LASIK is investigational in the United States because there are no FDA approved indications.

Wavefront-guided excimer laser ablations may provide improved quality of vision under dim lighting conditions relative to conventional excimer laser ablations (*Netto*, 2006).

Wavefront-guided ablation is not suitable for all patients. Wavefront data may be impossible to obtain in very irregular corneas or with smaller pupillary diameters. The treatment is more costly than conventional excimer laser ablation because of the time required to collect the wavefront data that are needed to program the excimer laser (*Nuijts et al.*, 2002).

INTRODUCTION AND I IM OF THE WORK

Factors that may cause an increase of optical aberrations postoperatively are variables in the LASIK procedure including creation of the corneal flap, corneal lamellar ablation resulting in asymmetric anterior surface flattening, mild decentration of the laser ablation, and wound healing effects such as epithelial hyperplasia and forward shifting of the posterior cornea. Other factors may include accommodation, aging, and pupil size (Wilson et al., 2001).

AIM OF THE ESSAY

The purpose of the study is to know and review the results of the customized LASIK and conventional LASIK.

OCULAR ABERRATIONS

The perfect eye would image every point in the scene to a corresponding small point on the retina. In other words, no blurring would occur for any point in the scene (MacRae, 2000).

Anything other than the ideal image is called "optical aberrations". One of them is *lower order aberrations* (*LOAs*) that include spherical errors (myopia and hyperopia) and regular astigmatism and have more devastating effects on quality of image which is not dependant on pupil size and easily corrected by glasses, contact lenses and conventional Lasik. The other is *higher order aberrations* (*HOAs*) which are the refractive errors beyond spherocylinder errors formerly known as "irregular astigmatism", their effect is less than LOAs (the higher the order the less the effect), they affect contrast more than resolution of image and affected by the pupil size; affect mesopic vision more than day vision (*MacRae*, 2000).

Aberrations are either: (Schwiegerling, 2000)

- I. Chromatic aberrations.
- II. Monochromatic aberrations; which are studied as:
 - > Ray aberrations.
 - > Wavefront aberrations.

I. CHROMATIC ABERRATIONS

The eye suffers from chromatic aberrations, that are the result of dispersion in optical elements of the eye. The index of refraction of the various components of the eye depends on the

wavelength of light, and, thus, white light entering the eye is spread into a spectrum of colors, just as a prism disperses white light into a rainbow. For longitudinal chromatic aberration, a wavefront of green light will converge to a point on the retina. Red wavefronts will suffer from hyperopic spherical refractive error and converge to a point behind the retina, whereas blue wavefronts will suffer from myopic spherical refractive error and converge to a point in front of the retina. Thus, chromatic aberration is simply spherical refractive error that depends on wavelength. Figure 5; shows the effects of chromatic aberration on the wavefronts converging in the eye (Schwiegerling, 2000).

In general, the wavefronts formed by the eye will take on complex non-spherical shapes, and different wavelengths will have different wavefront shapes. To push the eye to its theoretical limits of performance, all of the monochromatic and chromatic aberrations would need to be corrected. In other words, the wavefronts converging toward the retina need to be perfectly spherical, regardless of wavelength, and all of them must converge to a perfect point on the retina. In this manner, a point of white light out in the world is imaged to a point of white light on the retina (Schwiegerling, 2000).

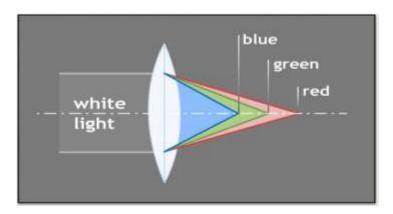


Figure (1): Chromatic aberration.

II. MONOCHROMATIC ABERRATIONS

A- Ray aberrations:

1- Spherical Aberration:



Figure (2): Spherical aberrations (Yoon. 2002).

Spherical lenses do not bring all rays to a perfect focus point. For a plus spherical lens, there is increasing converging power as the lateral distance from the central ray is increased. Thus, spherical aberration causes rays at the edge of the lens to be focused anterior to the focus of the central ray. Instead of all of the rays of light coming to a concise point of focus, they are distributed over a small region of the image, and there is no single sharp point of focus. Spherical aberration in humans is due to the anterior surface of the cornea and the anterior and posterior surfaces of the crystalline lens. compensates somewhat for this by its natural prolate shape or flatter paracentral and peripheral curve than centrally. As we ablate for myopia and flatten the center, we reduce prolateness and actually increase spherical aberration. At night, pupil dilation increases spherical aberration, which causes a slight (0.5 to 1.0 D) increase in myopia. Hence, the root cause for "night myopia" is the principle of spherical aberration (Doane et al., 2003).