EFFECT OF USING GRAFTED PLANTS ON PRODUCTIVITY AND QUALITY OF SOME VEGETABLE CROPS

By

MONA ALI MOHAMED ALI

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003M. Sc. Agric. Sc. (Vegetable), Cairo University, 2007

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF USING GRAFTED PLANTS ON PRODUCTIVITY AND QUALITY OF SOME VEGETABLE CROPS

By

MONA ALI MOHAMED ALI

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003M. Sc. Agric. Sc. (Vegetable), Cairo University, 2007

This thesis for Ph. D. degree has been approved by:		
Dr. Said Abdalla Shehata Prof. of Vegetable Crops, Faculty of Agriculture, Cairo University		
Dr. Ibrahim El-Oksh Emeritus Prof. of Vegetable Crops, Faculty of Agriculture, Air Shams University		
Dr. Usama Ahmed El- Behairy Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University		
Dr. Ahmed Mahmoud El-Gizawy Emeritus Prof. of Vegetable Crops, Faculty of Agriculture, Air Shams University		

Date of Examination: 10/5/2015

EFFECT OF USING GRAFTED PLANTS ON PRODUCTIVITY AND QUALITY OF SOME VEGETABLE CROPS

By

MONA ALI MOHAMED ALI

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003M. Sc. Agric. Sc. (Vegetable), Cairo University, 2007

Under the supervision of:

Dr. Ahmed Mahmoud El-Gizawy

Emeritus Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Usama Ahmed El- Behairy

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Sami Abdel Gawad Mohamed Gaafer

Prof. of Vegetable Crops, Horticulture Research Institute, Agricultural Research Center

ACKNOLEDGEMENT

Firstly, I direct my deepest thanks to **Allah** who gave me the power and patience to finish this work.

The writer whishes to express her great thanks and deep gratitude to **Prof. Dr. Ahmed Mahmoud El-Gizawy,** Emeritus Professor of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for suggesting the current study and his supervision and help during the course of this study and during preparing and reviewing the manuscript.

Deep gratitude and thanks is also due to **Prof. Dr. Usama Ahmed El-Behairy,** Professor of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for his kind supervision, advice, valuable assistance during the preparation of this thesis.

Sincere thanks to late **Prof. Dr. Sami Abdel Gawad Mohamed Gaafer**, Professor of Vegetable Crops, Horticulture Research Institute, Agricultural Research Center, for his supervision, great support and continued help during the preparation of this work.

Thanks are also extended to **the staff members** of Climate Modification Department Research, Central Laboratory for Agricultural Climate for their encouragement and help during the course of this work.

Finally, deepest gratitude for **my family** for their continuous help and encouragement through this work.

ABSTRACT

Mona Ali Mohamed Ali: Effect of Using Grafted Plants on Productivity and Quality of Some Vegetable Crops. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2015.

Three experiments were performed in a plastic house at Kaha Research Station, Horticulture Research Institute, Ministry of Agriculture, during the period from 2010 to 2012. This work aimed to evaluate the plant spacing, i.e. 50, 75 and 100 cm, between plants when the grafting was presented on tomato, cucumber and cantaloupe. As well as studying of the effect of grafting on the vegetative growth parameters, yield and mineral contents of grafted tomato, cucumber and cantaloupe leaves and their progeny generation ones, i.e. those obtained from progeny generation of grafted plants. As main plot, three plant spacing levels (50, 75 and 100 cm) and as submain plot, three different rootstocks were applied in splitplot design with three replicates. The results showed that there were significant differences in tomato, cucumber and cantaloupe vegetative growth parameters, yield and its component, nutrient percentage of leaves (NPK) and calculated data (net assimilation ratio, relative growth rate and leaf area ratio) due to using the rested plant spacing. Vegetative growth parameters and yield were increased by using 75 cm plant spacing. However, the lowest values were found at 100cm plant spacing. The highest values of the tested parameters were obtained with TM1003F1 rootstock in tomato and Super Shintosa in cucumber and cantaloupe .The interaction between 75 cm spacing treatment and TM1003F1 in tomato and Super Shintosa in cucumber and cantaloupe were cleared.

<u>Key words:</u> Graft, Rootstocks, Plant spacing, Tomato, Cucumber, Cantaloupe, Greenhouse.

CONTENTS

		Page
	LIST OF TABLES	VI
	LIST OF FIGURES	IX
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
	2.1. Effect of grafting on vegetative growth	4
	2.2. Effect of grafting on early and total yield	9
	2.3. Effect of grafting on fruit quality parameters	17
	2.4. Effect of grafting on leaf chemical components	21
	2.4.1.Effect of grafting on chlorophyll content	21
	2.4.2.Effect of grafting on leaf mineral contents	22
3.	MATERIALS AND METHODS	25
	3.1. Plastic house description in Kaha station	25
	3.2. Tomato experiment	25
	3.2.1. Plant material	25
	3.2.2. Grafting method	26
	3.2.3. Treatments	27
	3.2.4. Statistical design and analysis	27
	3.3. Cucumber and cantaloupe experiments	28
	3.3.1. Plant material	28
	3.3.2. Grafting method	29
	3.3.3. Statistical design and analysis	30
	3.4. Measurements	30
	3.4.1. Soil analysis	30
	3.4.2. Climatic conditions parameters	31
	3.4.3. Plant growth parameters	31
	3.4.3.1. Plant length	31
	3.4.3.2. leaves fresh weight	32
	3 4 3 3 Number of leaves	32

3.4.3.4. Total leaf area	32
3.4.3.5. Stem diameter	32
3.4.3.6. Total number of clusters per plant	32
3.4.4. Calculated data (Growth analysis)	32
3.4.4.1. Leaf area ratio (LAR)	32
3.4.4.2. Relative growth rate (RGR)	33
3.4.4.3. Net assimilation rate (NAR)	33
3.4.5. Yield and its components	33
3.4.5.1. Early yield	33
3.4.5.2. Total Yield	33
3.4.6. Fruit physical characteristics	33
3.4.6.1. Fruit length	33
3.4.6.2. Fruit diameter	34
3.4.6.3. Fruit shape index	34
3.4.6.4. Fruit weight	34
3.4.6.5. Flesh thickness	34
3.4.7. Fruits chemical content	34
3.4.7.1. Soluble solid content (SSC)	34
3.4.7.2. Ascorbic acid content	34
3.4.7.3. Total sugars	34
3.4.8. Chemical composition of plants	34
3.4.8.1. Leaves dry weight	34
3.4.8.2. Chlorophyll reading	34
3.4.8.3. The percentage of mineral	35
4. RESULTS AND DISCUSSION	36
4.1. Tomato experiment	36
4.1.1. Effect of plant spacing and rootstocks on	
vegetative growths parameters of	
grafted tomato	36
4.1.1.1. Plant length	36
4.1.1.2. leaves fresh weight	36
4.1.1.3. Number of leaves per plant	39

	4.1.1.4. Total leaf area	41
	4.1.1.5. Stem diameter	41
	4.1.1.6. Total number of clusters per plant	43
4.1.2.	Effect of different plant spacings and	
	rootstocks on yield of tomato plants and its	
	component	48
	4.1.2.1. Early yield	48
	4.1.2.2. Total yield	48
	4.1.2.3. Fruits parameters	50
4.1.3.	Effect of different plant spacing and	
	rootstocks on chemical contents in tomato	
	plants leaves	53
	4.1.3.1. leaves dry weight	53
	4.1.3.2. Chlorophyll reading	55
	4.1.3.3. Nitrogen percentage	56
	4.1.3.4. Phosphorus percentage	58
	4.1.3.5. Potassium percentage	58
4.1.4.	Effect of different plant spacings and	
	rootstocks on growth analysis of tomato	
	plants	61
	4.1.4.1. Leaf area ratio (LAR)	61
	4.1.4.2. Relative growth rate (RGR)	61
	4.1.4.3. Net assimilation rate (NAR)	61
4.2. Cucur	nber experiment	65
4.2.1.	Effect of plant spacings and rootstocks on	
	vegetative growth of cucumber plants	65
	4.2.1.1. Plant length	65
	4.2.1.2. leaves fresh weight	67
	4.2.1.3. Number of leaves per plant	69
	4.2.1.4. Stem diameter	71
	4.2.1.5. Total leaf area	73

4.2.2.	Effect of different plant spacing and rootstocks	
	on yield of cucumber plants and its	
	component	76
	4.2.2.1. Early yield	76
	4.2.2.2. Total yield	77
	4.2.2.3. Fruits parameters	79
4.2.3.	Effect of different plant spacings and	
	rootstocks on chemical contents of cucumber	
	plants	81
	4.2.3.1. Leaves dry weight	81
	4.2.3.2. Chlorophyll reading	83
	4.2.3.3. Nitrogen percentage	84
	4.2.3.4. Phosphorus percentage	86
	4.2.3.5. Potassium percentage	86
4.2.4.	Effect of different plant spacings and	
	rootstocks on growth analysis of cucumber	
	plants	88
	4.2.4.1. Leaf area ratio (LAR)	88
	4.2.4.2. Relative growth rate (RGR)	88
	4.2.4.3. Net assimilation rate (NAR)	91
4.3. Canta	aloupe experiment	91
4.3.1.	Effect of different plant spacings and	
	rootstocks on vegetative growth parameters of	
	cantaloupe plants	91
	4.3.1.1. Plant length	91
	4.3.1.2. leaves fresh weight	94
	4.3.1.3. Number of leaves per plant	96
	4.3.1.4. Stem diameter	98
	4.3.1.5. Total leaf area	98
4.3.2.	Effect of different plant spacings and	
	rootstocks on yield of cantaloupe plants and	
	its component	102

		4.3.2.1. Early yield	102
		4.3.2.2. Total yield	102
		4.3.2.3. Fruits physical parameters	104
		4.3.2.4. Fruits chemical content	107
	4.3.3.	Effect of different plant spacings and	
		rootstocks on chemical contents in the fourth	
		leaf of cantaloupe plants	107
		4.3.3.1. Leaves dry weight	107
		4.3.3.2. Chlorophyll reading	110
		4.3.3.3. Nitrogen percentage	111
		4.3.3.4. Phosphorus percentage	113
		4.3.3.5. Potassium percentage	113
	4.3.4.	Effect of different plant spacings and	
		rootstocks on growth analysis of cantaloupe	
		plants	115
		4.3.4.1. Leaf area ratio (LAR)	115
		4.3.4. 2. Relative growth rate (RGR)	115
		4.3.4.3. Net assimilation rate (NAR)	115
5.	SUMMAR	RY AND CONCLUSION	120
6.	REFERE	NCES	128
	APPENDI	CES	120
	ARABIC S	SUMMARY	

LIST OF TABLES

Table		Page
1	Scions and rootstocks of tomato experiment	25
2	Dates of tomato grafting process during both growing seasons	26
3	Scions and rootstocks of cucumber and cantaloupe experiments	28
4	Dates of cucumber and cantaloupe grafting process during both growing	
	seasons	29
5	Mechanical and chemical properties of soil sample analysis	31
6	Monthly calculation of diurnal cycle of air temperature and relative air	
	humidity during the experiment time	32
7	The growth analysis symbols and units	33
8	Effect of plant spacing and rootstocks on tomato plant length (cm)	
	during 2010/2011 and 2011/2012 seasons	37
9	Effect of plant spacing and rootstocks on tomato fresh weight (g) during	
	2010/2011 and 2011/2012 seasons	38
10	Effect of plant spacing and different rootstocks on number of leaves per	
	plant tomato during 2010/2011 and 2011/2012 seasons	40
11	Effect of plant spacing and rootstocks on tomato plants leaf area (cm ²)	
	during 2010/2011 and 2011/2012 seasons	42
12	Effect of plant spacing and rootstocks on tomato plants stem diameter	
	(cm) during 2010/2011 and 2011/2012 seasons	44
13	Effect of plant spacing and rootstocks on tomato plants number of	
	clusters during 2010/2011 and 2011/2012 seasons	45
14	Effect of plant spacing and rootstocks on tomato early and total yield	
	(kg/plant) during 2010/2011 and 2011/2012 seasons	49
15	Effect of plant spacing and rootstocks on tomato fruits parameters during	
	2010/2011 and 2011/2012 seasons	51
16	Effect of plant spacing and rootstocks on tomato fruits chemical content	
	during 2010/2011 and 2011/2012 seasons	52
17	Effect of plant spacing and rootstocks on tomato leaves dry weight (g)	
	during 2010/2011 and 2011/2012 seasons	54

18	Effect of plant spacing and rootstocks on chlorophyll reading (Spad) of	
	tomato during 2010/2011 and 2011/2012 seasons	55
19	Effect of plant spacing and rootstocks on nutrient percentage of the	
	leaves of tomato during 2010/2011 and 2011/2012 seasons	57
20	Effect of plant spacing and rootstocks on cucumber plant length (cm)	
	during 2010/2011 and 2011/2012 seasons	66
21	Effect of plant spacing and rootstocks on leaves fresh weight (g) of	
	cucumber during 2010/2011 and 2011/2012 seasons	68
22	Effect of plant spacing and rootstocks on cucumber leaf number per	
	plant during 2010/2011 and 2011/2012 seasons	70
23	Effect of plant spacing and rootstocks on cucumber stem diameter (mm)	
	during 2010/2011 and 2011/2012 seasons	72
24	Effect of plant spacing and rootstocks on cucumber leaf area (cm ²)	
	during the two seasons of 2010/2011 and 2011/2012	74
25	Effect of plant spacing and rootstocks on cucumber early and total yield	
	(kg/plant) during 2010/2011 and 2011/2012 seasons	77
26	Effect of plant spacing and rootstocks on cucumber fruits parameters	
	during 2010/2011and 2011/2012 seasons	80
27	Effect of plant spacing and rootstocks on cucumber leaves dry weight (g)	
	during 2010/2011 and 2011/2012 seasons	82
28	Effect of plant spacing and rootstocks on cucumber leaf chlorophyll	
	reading (Spad) during 2010/2011 and 2011/2012 seasons	84
29	Effect of plant spacing and rootstocks on nutrient percentage on the	
	leaves of cucumber during 2010/2011 and 2011/2012 seasons	85
30	Effect of plant spacing and rootstocks on cantaloupe plant length (cm)	
	during 2010/2011 and 2011/2012 seasons	93
31	Effect of plant spacing and rootstocks on leaves fresh weight (g) of	
	cantaloupe during the two seasons of 2010/2011 and 2011/2012	95
32	Effect of plant spacing and rootstocks on cantaloupe leaf number per	
	plant during 2010/2011 and 2011/2012 seasons	97
33	Effect of plant spacing and rootstocks on cantaloupe stem diameter	
	(mm) during 2010/2011 and 2011/2012 seasons	99

VIII

34	Effect of plant spacing and rootstocks on cantaloupe total plant leaf area	
	(cm ²) during 2010/2011 and 2011/2012 seasons	100
35	Effect of plant spacing and rootstocks on cantaloupe early and total yield	
	(kg/plant) during 2010/2011 and 2011/2012 seasons	103
36	Effect of plant spacing and rootstocks on cantaloupe fruits parameters	
	during 2010/2011 and 2011/2012 seasons	105
37	Effect of plant spacing and rootstocks on fruits chemical content during	
	2010/2011 and 2011/2012 seasons	108
38	Effect of plant spacing and rootstocks on cantaloupe leaves dry weight	
	(g) during 2010/2011 and 2011/2012 seasons	109
39	Effect of plant spacing and rootstocks on cantaloupe leaf chlorophyll	
	reading (Spad) during 2010/2011 and 2011/2012 seasons	111
40	Effect of plant spacing and rootstocks on nutrient percentage on the	
	leaves of cantaloupe during 2010/2011 and 2011/2012 seasons	112

LIST OF FIGURES

Figure		Page
1	Steps of tube grafting	27
2	Steps of cut grafting	30
3	Effect of different plant spacing on leaf area ratio of grafted	
	tomato plants in 2010/2011 and 2011/2012 seasons	62
4	Effect of different plant spacing on relative growth rate of	
	grafted tomato plants in 2010/2011 and 2011/2012 seasons	63
5	Effect of different plant spacing on net assimilation rate of	
	grafted tomato plants in 2010/2011 and 2011/2012 seasons	64
6	Effect of different plant spacing on leaf area ratio of grafted	
	cucumber plants in 2010/2012 and 2011/2012 seasons	89
7	Effect of different plant spacing on relative growth rate of	
	grafted cucumber plants in 2010/2012 and 2011/2012 seasons	90
8	Effect of different plant spacing on net assimilation rate of	
	grafted cucumber plants in 2010/2012 and 2011/2012 seasons	92
9	Effect of different plant spacing on leaf area ratio of grafted	
	cantaloupe plants in 2010/2012 and 2011/2012 seasons	116
10	Effect of different plant spacing on relative growth rate of	
	grafted cantaloupe plants in 2010/2012 and 2011/2012 seasons	117
11	Effect of different plant spacing on net assimilation rate of	
	grafted cantaloupe plants in 2010/2012 and 2011/2012 seasons	118

1. INTRODUCTION

Tomato, cucumber and cantaloupe produced in plastic protection and in open field as well.

Intensive cultivation with vigorous crop growth and continuous cropping inevitably leads to pest and disease problems in the soil. The accumulation of these problems may lead to a loss of yield and eventually failure of the crop. The use of methyl bromide as a main method of disinfection method is banned in many countries. However; alternatives to methyl bromide can also have adverse effects on human health and environment.

There is inevitably a trend towards some forms of soilless or soil replacement cultivation or grafting. These do not, however, remove all the problems; it simply creates a new set.

Grafting is one of the most promising techniques which can be used as an alternative to the use of methyl bromide to prevent soil infestation by vascular pests and diseases due to non-rotation cropping. Compared with soilless culture, grafting is an environmentally friendly technique and is advantageous especially if the soil is infested with vascular nematodes and fungi, and there are resistant rootstocks.

Although the possibility and benefits of using grafted plants were recognized much earlier, large-scale commercial growing of grafted vegetables can be traced from the late 1950 to the early 1960 in Japan and Korea. In cucurbitaceous crops, over 90% of watermelon seedlings are grafted onto various rootstocks and about 75% of cucumbers in both countries. In solanaceous vegetables 20-40% of tomatoes, 20-40% of eggplant and 5-10% of pepper, are grafted. Grafting practiced in cucurbits and solanaceous vegetable was about 5% in 2007 of the world production (Lee *et al.*, 2010). This process is now common in Asia, parts of Europe, and the Middle East.

Grafting is rare in the United States, and there have been few experiments to determine optimal grafting production practices for