Relationship Between Serum Hemojuvelin And Iron Requirement In Chronic Hepatitis C In Hemodialysis Patients Thesis

Submitted for the Partial Fulfillment of M.D in Internal Medicine

 $\mathcal{B}y$

Fatma Abd EL Rahman Ahmed

Master degree in internal medicine *Under Supervision of*

Dr. Khaled Hussein Abou Seif

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Yasser Soliman Ahmed

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Heba Wahid El Said

Assistant Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Hesham Atef Abou Ellail

Assistant Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Maha Abd El Moneim Behairy

Lecturer of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

العلاقة ما بين مستوى الهيموجوفيلين بالدم واحتياجات الحديد لدى مرضى الاستصفاء الدموى المصابين بالالتهاب الكبدى الفيروسى المزمن (سي)

رسالة توطئة للحصول على درجة الدكتوراة في الباطنة العامة

مقيمة من

الطبيبة / فاطمة عبد الرحمن أحمد

ماجستير الباطنة العامة - كلية الطب- جامعة عين شمس

تحت إشراف أ.د/ خالد حسين أبو سيف

> أستاذ أمراض الباطنة العامة والكلى كلية الطب- جامعة عين شمس

أ.د/ ياسر سليمان أحمد

أستاذ أمراض الباطنة العامة والكلى

كلية الطب- جامعة عين شمس

أ.م.د/ هبة وحيد السعيد

أستاذ مساعد أمراض الباطنة العامة والكلى

كلية الطب- جامعة عين شمس

أ.م.د/ هشام عاظف أبو الليل

أستاذ مساعد أمراض الباطنة العامة والكلى

كلية الطب- جامعة عين شمس

د/ مها عبد المنعم بحيري

مدرس أمراض الباطنة العامة والكلى

كلية الطب- جامعة عين شمس

كلية الطب

جامعة عين شمس

7.10

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

I wish to express my thanks and deepest appreciation to Prof. Dr. Khaled Abouseif, Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement which made possible the completion of this work.

I would like to record my cardinal thanks to Prof. Dr. Yasser Soliman Ahmed, Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for his great care, valuable instruction, constant help and helpful advice.

Also my great thanks to Dr. Heba Wahid Elsaid and Dr. Hesham Abou ellail, Assistant Professors of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for their continuous supervision, stimulating support and valuable suggestions.

Also my great thanks to Dr. maha behairy, Lecturer of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for her continuous supervision, stimulating support and valuable suggestions.

I would like to express my hearty thanks to my mother, all my family members for their support, understanding and tolerance till this work has been completed.

سورة البقرة الآية: ٣٢

Contents

Subjects	Page
List of abbreviations	II
List of Figures	VI
List of Tables	VIII
• Introduction	1
Aim of the work	3
• Review of Literature	
♦ Chapter (1): Anemia in Endstage Renal Disease	4
♦ Chapter (2): Hemojuvelin and Hepcidin Pathways	41
◆ Chapter (3): Hemojuvelin and Hepcidin in Endstage Renal Disease	
◆ Chapter (4): Management of Anemia in Endstage Renal Disease	112
Subjects and Methods	143
• Results	149
• Discussion	174
• Summary	189
• Conclusion	193
• Recommendation	195
• References	196
Appendix	257
Arabic Summary	

AA	Amino acid
ACD	Anemia of chronic disease
ACEI	Angiotensin converting enzyme inhibitor
ACTR II A	Activin related protein
ALK	Activin like kinase
ALT	Alanine aminotransferase
ANg II	Angiotensin II
APKD	Adult polycystic kidney disease
APO TF	Apotransferrin
AST	Aspartate aminotransferase
BFU-E	Burst forming unit erythroblast
BMI	Body mass index
BMP	Bone morphogenetic protein
BMP RE	Bone morphogenetic protein responsive element
BP	Blood pressure
BUN	Blood urea nitrogen
CAMP	Cyclic adenosine monophosphate
CD	Cluster of differentiation
CERA	Continous erythropoietin receptor activator
CFU-E	Colony forming units erythroblast
СНС	Chronic hepatitis C
CHF	Congestive heart failure
CHILD C	Child-Pugh score system
CHr	Reticulocyte Hb content
Chronic GN	Chronic glomerulonephritis
CKD	Chronic kidney disease
CLD	Chronic liver disease
COMBI	Combined IDA and ACD
CRE B	Cyclic adenosine monophosphate responsive
CKE B	element binding protein
CRER H	Cyclic adenosine monophosphate responsive
CREB H	element binding protein hepatocyte specific
CRP	C reactive protein
CVS	Cardiovascular system
DCYTB	Duodenal cytochrome B
DM	Diabetes mellitus
DMT 1	Divalent metal transporter 1
Dry Wt	Dry weight

	T
EASL	European Association for the Study of the Liver
E GFR	Estimated Glomerular filtration rate
EGF	Epidermal growth factor
EMA	European medicine agency
EPO	Erythropoietin
ER	Endoplasmic reticulum
ERK	Extracellular signal regulated kinase
ESA	Erythropoietin stimulating agents
ESRD	End stage renal disease
FDA	Food and drug adminstiration
FG	Fibrogen
FID	Functional iron deficiency
FLV CR1	Feline leukemia virus C receptor
FPN	Ferroportin
FV III	Fibronectin III
GDF 15	Growth differentiation factor 15
GPI	Glycosyl phosphatidyle inositol
HAMP	Hepatic anti microbial protein
Hb	Hemoglobin
Hb/HT	Hemoglobin/Hematocrit
НСТ	Heamatocrit
HCV	Hepatitis c virus
HD	Hemodialysis
Hep3B	Human hepatoma cell line
НЕРН	Hephaestin
HFE	Hemochromatosis iron protein
HFE 2	Hemochromatosis gene 2
HGF	Hepatocyte growth factor
HIF	Hypoxia inducible factor
HJV	Hemojuvelin
НО	Heme oxygenase
HO 1	Heme oxygenase 1
HRC	Hypochromic RBCs
Hs CRP	High sensitivity C reactive protein
HTN	Hypertension
HYPO %	Hypochromic RBCs
ID	Iron deficiency
Id 1	Inhibitor of DNA binding 1
IDA	Iron deficiency anemia
IL 6	Interlukine 6

IL-1	Interleukin 1
IL1β	Interleukin 1 beta
INF γ	Interferon gamma
IRE	Iron regulatory element
IRIDA	Iron refractory iron deficiency anemia
IRP	Iron regulatory protein
ISHD	Ischemic heart disease
IV	intravenous
JAK-2	Janus kinase -2
JH	Juvenile hemochromatosis
K& R	Kiss and run
KDIGO	Kidney disease improving global outcomes
KDOQI	Kidney disease outcomes quality initiative
L- RNA	Levoretatory ribo nucleo amine
LEAP-1	Liver expressed anti microbial peptide
LHD	Low hemoglobin density
LNMMA NG	L - N monomethyl arginin
LPS	Lipo polysaccharide
LRP 1	Low density lipoprotein receptor related protein 1
LV	Left ventricle
LVH	Left ventricular hypertrophy
M HJV	Membrane hemojuvelin
M RNA	Messenger ribonucleic acid
M TOR	Mammalian target of rapamycin
MAb	Monoclonal antibody
MAP	Mean arterial pressure
MAPK	Mitogen activated protein kinase
MCHC	Mean cell hemoglobin concentration
MFRN 1	Mitoferrin
MHC	Major histocompatibilty complex
MHD	Maintainance hemodialysis
MIA	Malnutrition inflammation anemia
MT2	Matriptase 2
NHANES	National health and nutrition examination
NTBI	Non transferrin bound iron
P SMAD	Phosphorylated SMAD
PAER 1	Prevalence of anemia in early renal
IAENI	insufficiency
PDGF BB	Platelate derived growth factor BB
PDGFRs	Platelate derived growth factor receptors

PFe	Plasma iron
PRCA	Pure red cell aplasia
PTH	Parathyroid hormone
RBCs	Red blood cells
RCT	Randomized controlled trial
RES	Reticuloendothelial store
RGM	Repulsive guidance molecule
Rhu EPO	Recombinant human erythropoietin
ROS	Reactive oxygen species
R-SMAD	Receptor activated SMAD
SC	Subcutaneous
SHJV	Soluble hemojuvelin
sHJV.Fc	Soluble hemojuvelin-Fc fusion protein
Si RNA	Small interfering ribonucleic acid
SMADS	Human homolog of Drosophila mad - mother against
	decapentaplegic
STAT 3	Signal transducer and activator of transcription 3
STFR	Soluble transferrin receptor
STFR\ Log Ferritin	Soluble Transferring Receptor\ Logarithm Ferritin
T.Bilirubin	Total.bilirubin
TF	Transferrin
TFR	Transferrin receptor
TGFβ	Transforming growth factor beta
TGN	Transgolgi network
TIBC	Total iron binding capacity
TID	True iron deficiency
TMPRSS6	Trans membrane serine protease 6
TNF	Tumor necrosis factor
TNFα	Tumer necrosis factor alfa
TRNA	Transfer ribonucleic acid
TSAT	Transferrin saturation
TWSG 1	Twisted gastrulation 1
URR	Urea reduction ratio
VEGF	Vascular endothelial growth factor
VHL	Von hipple lindau
WHO	world health organization
α2 Μ α 2	Alfa 2Macroglobulin-methyle amine activated

List of Figures

List of Figures

No.	Figure	Page	
Figures in Review of Literature			
1	Summary of the potential mechanisms for higher mortality in CKD patients with anemic .	6	
2	Model of normal hematopoiesis.	13	
3	Distribution of iron in adult.	16	
4	Dietary iron absorption .	19	
5	Iron traffic in erythrocyte precursors.	22	
6	Disordered iron balance in CKD.	27	
7	Generation of soluble hemojuvelin (sHJV) forms and their proposed interactions.	47	
8	Hepcidin interaction with ferroportin controls the main iron flows into plasma.	60	
9	Molecular regulation of hepcidin by iron and inflammation	65	
10	Regulation of hepatocellular hepcidin expression	68	
11	Proposed mechanisms for hypoxia-mediated regulation of hepcidin.	71	
12	Schematic diagram showing the central role of the BMP6-HJV-SMAD signaling pathway.	72	
13	Summarizes our current understanding of HJVand hepcidin pathway in iron regulation.	79	
14	Pathophysiological Mechanisms Underlying Anemia of Chronic Disease.	99	
15	Inhibitor that target the hepcidin ferroportin axis.	135	
16	Regulation of EPO (erythropoietin) gene expression	137	
17	Regulation of hypoxia inducible factor (HIF) activity.	138	
	Figures in Results		
1	Sex distribution among the studied groups	151	
2	Etiology of ESRD in Group I.	152	
3	Etiology of ESRD in Group II.	152	
4	Comparison of hepcidin level between the studied groups.	155	
5	Comparison of HJV level between the studied groups	156	
6	Comparison between s.iron level in Group I and Group II.	156	
7	Comparison between TIBC in Group I and Group II.	157	
8	Comparison between TSAT in Group I and Group II.	157	
9	Comparison between ferritin in Group I and Group II.	158	
10	Comparison between dialysis groups and control group as regard Hemojuvelin	159	

List of Figures

No.	Figure	Page
11	Comparison between dialysis groups and control group as	160
	regard Hepcidin	100
12	Correlation between HJV and age in Group I	161
13	Correlation between HJV and duration of dialysis in Group I	161
14	Correlation between hepcidin and URR in GroupI	163
15	Correlation between hepcidin and KT/V in GroupI	163
16	Correlation between HJV and TIBC in Group II	166
17	Correlation between HJV and TSAT in Group III	168
18	Correlation between iron and Hepcidin in all study subjects.	171
19	Correlation between TIBC and Hepcidin in all study subjects.	171
20	Correlation between TSAT and Hepcidin in all study subjects.	172
21	Correlation between ferritin and Hepcidin in all study subjects.	172

List of Tables

No.	Table	Page
	Tables in Review of Literature	
	Potentially correctable versus non-correctable	
1	factors involved in the anemia of CKD, in addition	9
	to erythropoietin deficiency.	
2	Causes of hyporesponsiveness to erythropoietin.	125
	Tables in Results	
1	Demographic and clinical characteristics of the studied groups.	150
2	Etiogy of ESRD in HD Groups (Group I&II).	151
3a	Comparison between the studied groups as regard	153
Sa	laboratory results	155
3b	Post Hoc analysis.	154
4	Comparison between dialysis groups and control	158
•	group bt T test as regard Hemojuvelin	130
5	Comparison between dialysis groups and control group by T test as regard Hepcidin	159
6	Correlations between HJV and Hepcidin with	160
	patients characteristics in Group I	
7	Correlation between HJV and Hepcidin with	162
	laboratory results in Group I Correlations between HJV and Hepcidin with	
8	patients characteristics in Group II	164
9	Correlation between HJV and Hepcidin with	165
9	laboratory results in Group II	103
10	Correlations between HJV and Hepcidin with Group III characteristics	166
	Correlation between HJV and Hepcidin with	
11	laboratory results in Group III	167
10	Correlation between HJV and iron parameters in	1.00
12	HD Groups	168
13	Correlation between Hepcidin and iron parameters in HD Groups	169
	Correlation between HJV and Hepcidin with all	
14	studied parameters in all study subjects	170
15	Correlation between hemojuvelin and hepcidin with sex, DM, HTN and ISHD.	173

Introduction

Anemia is a common problem in patients with end stage renal disease (ESRD) and increases mortality and morbidity in these patients, especially related to cardiovascular events (*Lankhorst and Wish*, 2010).

Anemia associated with chronic kidney disease (CKD) is multifactorial: inadequate production of endogenous erythropoietin (EPO) for the degree of anemia, iron deficiency, blood loss, shortening of life span of erythrocytes, presence of inhibitors of erythropoiesis in plasma and vitamin deficiency (Mercadel et al., 2012).

Our understanding of iron metabolism has advanced dramatically in the past few years, mainly as a result of the discovery of hepcidin (*Papanikolaou et al.*, 2005).

Hepcidin is a peptide produced by the liver, it suppresses intestinal iron uptake and release from internal stores by facilitating the degradation and internalization of the only known iron exporter, ferroportin (FPN), which is expressed on the surface of enterocytes, hepatocytes and macrophages (*Babitt and Lin*, 2010).

Hemojuvelin (HJV) is aprotein that is responsible for the overload condition iron known juvenile as hemochromatosis (JH). HJV highly expressed in the liver, skeletal muscle and heart, seems to play a role in iron absorption and release from cells and has anti-

IIntroduction

inflammatory properties, it regulate hepcidin expression specifically in the iron sensing pathway (*Huang et al.*, 2005).

Thus, disruption of HJV results in inappropriate regulation of hepcidin expression and consequently causes either iron overload or iron deficiency (*Lee et al.*, 2010).

Hepatitis C virus (HCV) infection is the most common cause of chronic liver disease in the world and also common among chronic hemodialysis (HD) patients (Fujita et al., 2007).

Nearly present between 4% to 70% in patients on HD (*Li et al., 2011*). Patients with chronic HCV infection often have increased liver iron (*Miura et al., 2008*).

HCV positive HD patients have been found to have low levels of serum prohepcidin which might account for iron accumulation together with lower iron and erythropoietin (EPO) requirements in those patients (Caliskan et al., 2012).

HJV was found to be elevated in HD patients and correlated to kidney function and iron status. It appears that HJV could be a new player in the iron metabolism in HD patients (Malyszko (A) et al., 2012).

Aim of the Work

- 1. To measure the level of hemojuvelin in hemodialysis patients.
- 2. To identify the association of hemojuvelin level with iron parameters in hemodialysis patients.
- 3. To compare hemojuvelin level in hepatitis C virus positive hemodialysis patients to those who are hepatitis C virus negative.