INFECTION IN SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) PATIENTS; PREVALENCE AND RISK FACTORS

Thesis

Submitted in Partial Fulfillment for the Master Degree in Rheumatology and Rehabilitation

By

Shimaa Khaled Sayed

(M.B.B.Ch.,) Faculty of Medicine Cairo University

Supervised by

Prof. Dr. Somaya Anwar Hussein

Professor of Rheumatology and Rehabilitation

Cairo University

Dr. Dalia Ahmed Dorgham

Lecturer of Rheumatology and Rehabilitation

Cairo University

Faculty of Medicine
Cairo University
2016

Acknowledgement

"First and foremost thanks to 'GOD' the most kind and merciful"

I would like to express my sincere appreciation and performed thanks to **Prof. Dr. Somaya Anwar Hussein**, Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, for her great effort, productive guidance, and valuable instructions.

I would like to extend my deepest thanks and respect to **Dr. Dalia Ahmed Dorgham**, lecturer of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, for her tremendous assistance and innovative ideas and for her scientific support.

Finally, most thanks to my Father, my Mother and my Husband for their support and I thank all friends and my colleagues in the Department of Rheumatology and Rehabilitation for cooperation and mutual fidelity.

Shimaa Khaled Sayed

Abstract

This work aimed to study the prevalence of infection in patients with systemic lupus erythematosus (SLE), find out the different predictors and risk factors for infection in SLE and to correlate infection with different clinical, laboratory parameters, disease activity scores and use of glucocorticoids and immunosuppressive drugs.

One hundred patients with SLE, all fulfilling the 2012 SLICC criteria for the classification of SLE. All patients included in this study were subjected to full history taking, clinical examination, laboratory investigations as well as specific investigations directed to diagnosis of infection, its site and causative organism.

Our results showed that the most common sites of infection in SLE patients were chest and skin, while the most common type of infectious organisms was bacteria. Younger age, early disease, cardiac and pulmonary involvement, high ESR, thrombocytopenia, elevated serum creatinine, elevated 24-hours urinary proteins, consumed C3 and C4, high systemic lupus erythematosus disease activity index (SLEDAI) score and use of cyclophosphamide (CYC), mycophenolate mofetil (MMF) and high dose of glucocorticoids (GC), all were associated with increased risk of infection in SLE patients. Hydroxychloroquine (HCQ) use was negatively associated with infection.

Key words:

(Systemic lupus erythematosus – infection)

Contents

	Page
List of abbreviations	
List of tables	
List of figures	VII
Introduction	1
Aim of the work	4
Review of literature	5
Chapter 1:	5
 systemic lupus erythematosus (SLE) 	5
Chapter 2:	24
SLE and infection	24
Chapter 3:	42
 Predictors and risk factors for infection in SLE 	
Chapter 4:	
 Diagnosis of infection in SLE patients 	55
Chapter 5:	70
 Prevention strategies against infection in SLE 	70
Patients and methods	
Results	
Discussion	
Summary and conclusions	
Recommendations	
References	
Arabic summary	

List Of Abbreviations

ACR	American College of Rheumatology
AIIRD	Autoimmune inflammatory rheumatic diseases
ALT	Alanine transferase
ANA	Antinuclear antibody
Anti-ds DNA	Anti- double stranded deoxyribonucleic acid
APACHE	Acute physiology and chronic health evaluation
APCs	Antigen presenting cells
ARDS	Adult respiratory distress syndrome
ASIA	Autoimmune (auto-inflammatory) Syndrome Induced by Adjuvants
AST	Aspartate transferase
BANK	B-cell scaffold protein with ankyrin repeats gene
BAL	Bronchoalveolar lavage
BCG	Bacillus Calmette-Guérin
BCR	B cell antigen receptors
BLK	B lymphoid tyrosine kinase
Blys	B lymphocyte stimulator
С	Complement
C3bi	Complement 3 binding site
CAD	Coronary artery disease
CBC	Complete blood count
CD	Cluster of differentiation
CH50	50% Haemolytic Complement
CHF	Congestive heart failure
CMV	Cytomegalovirus
CNS	Central nervous system
COX-2	Cyclooxygenase-2
CR	Complement receptors
CRP	C-reactive protein
CsA	Cyclosporine A
CSF	Cerebrospinal fluid
CT	Computed tomography
CVS	Cardiovascular system
CXR	Chest x-ray
CYC	Cyclophosphamide
DIC	Disseminated intravascular coagulation
DM	Diabetes mellitus

I

DMARDs	Disease modifying anti-rheumatic drugs
DNA	Deoxyribonucleic acid
EBNA	Epstein-Barr nuclear antigen
EBV	Epstein-Barr virus
E. coli	Escherichia coli
ESR	Erythrocyte sedimentation rate
EULAR	European League Against Rheumatism
FCGR2A	Fc fragment of IgG receptor IIa
FcR	Constant fragment receptors
FUO	Fever of unknown origin
GC	Glucocorticoids
GERD	Gastroesophageal reflux disease
GIT	Gastrointestinal tract
gm	Gram
GWAS	Genome-wide association studies
НВ	Hemoglobin
HBV	Hepatitis B
HCQ	Hydroxychloroquine
HCV	Hepatitis C
HDL	High density lipoproteins
HIV	Human immunodeficiency virus
HLA-DR	Human Leukocyte Antigen - antigen D Related
HPV	Human papilloma virus
HSV	Herpes simplex virus
HZV	Herpes zoster virus
IA	Invasive aspergillosis
IC	Immune complex
ICAM	Intercellular adhesion molecule
ICOS	Inducible costimulator
ICU	Intensive care unit
IFN	Interferon
IgM	Immunoglobulin M
IGRA	Interferon gamma release assay
IL	Interleukin
IRAK	Interleukin receptor-associated kinase
IRF	Interferon regulatory factor
ITAM	Immuno-tyrosine activation motif
ITGAM	Integrin alpha M
IV	Intravenous

IVIG	Intravenous immunoglobulins
kg	Kilogram
KLK	Kallikrein
MBL	Mannose-binding lectin
mDCs	myeloid dendritic cells
MMF	Mycophenolate mofetil
MR	Magnetic resonant
NETs	Neutrophil extracellular traps
NF-kB	Nuclear factor kappa B
NHL	Non-Hodgkin lymphoma
NIH	National Institutes of Health
NK	Natural killer
NPSLE	Neuropsychiatric systemic lupus erythematosus
NSAIDs	Non-steroidal anti-inflammatory drugs
NTM	Non-tuberculous Mycobacterium
OPSI	Overwhelming post-splenectomy infection
OX40L	OX40 ligand
P2	Pulmonary area 2
PCR	Polymerase chain reaction
PCT	Procalcitonin
pDCs	plasmacytoid dendritic cells
PGE	Prostaglandin-E
PJP	Pneumocystis jiroveci pneumonia
PLTs	Platelets
PMNs	Polymorphonuclear leukocytes
23-PPV	23-valent polysaccharide pneumococcal vaccination
PTPN	Protein tyrosine phosphatase
PXK	PX Domain Containing Serine/Threonine Kinase
RNA	Ribonucleic acid
S.D.	Standard deviation
SCLE	Subacute cutaneous lupus erythematosus
SJS	Stevens Johnson Syndrome
SLE	Systemic lupus erythematosus
SLEDAI	Systemic Lupus Erythematosus Disease Activity Index
SLICC	Systemic Lupus International Collaborating Clinics
SNP	Single nucleotide polymorphism
SPP	Secreted phosphoprotein 1
SPSS	Statistical Package for the Social Science
STAT	Signal transducer and activator of transcription

TB	Tuberculosis
TEN	Toxic Epidermal Necrolysis
TLC	Total leucocytic count
TLR	Toll-like receptors
TMP-SMX	Trimethoprim-sulfamethoxazole
TNFAIP	Tumour necrosis factor-α-induced protein
TNF-α	Tumor necrosis factor-α
UTI	Urinary tract infection
VPI	Vaccine-preventable infections
VZV	Varicella zoster virus
WBC	White blood cells
χ^2	Chi-Square

List Of Tables

Tables no.		Page
Table (1)	Common organisms with their clinical picture, risk factors and preventive measures against infections	84
Table (2)	SLEDAI score	102
Table (3)	SLICC score	104
Table (4)	Demographic characteristics of studied SLE patients	108
Table (5)	Systemic involvement of studied SLE patients	110
Table (6)	Laboratory data of studied patients	112
Table (7)	SLEDAI score at study time	112
Table (8)	SLICC score at study time	113
Table (9)	Drugs consumed by the studied patients	113
Table (10)	Dose of GC consumed by studied patients at time of the study	114
Table (11)	Different sites of infection in the studied patients with SLE and infection	115
Table (12)	Types of infectious organisms in SLE patients studied with infection	117
Table (13)	Different organisms causing infection in studied SLE patients with infection	118
Table (14)	Correlations between infection and some demographic data	121
Table (15)	Correlation between infection and some clinical manifestations	122
Table (16)	Correlation between infection and some laboratory data	122
Table (17)	Correlation between infection and SLEDAI and SLICC damage scores	123

Table (18)	Correlation between infection and GC and some immunosuppressive drugs	123
Table (19)	Comparison between infected and non-infected SLE patients regarding some demographic data	124
Table (20)	Comparison between infected and non-infected groups regarding some clinical manifestations	125
Table (21)	Comparison between infected and non-infected SLE patients as regarding some laboratory criteria	126
Table (22)	Comparison between infected and non-infected groups of SLE patient regarding SLEDAI and SLICC damage scores	126
Table (23)	Comparison between infected and non-infected groups of SLE patients regarding use of GC and some immunosuppressive drugs	127
Table (24)	Comparison between infected and non-infected SLE patients regarding GC dose consumed at time of the study	127
Table (25)	Detected sites of infection during previous episodes of infection	128
Table (26)	Different types of causative organisms detected in previous infection episodes	129
Table (27)	Some detected data about previous infection episodes	130

List Of Figures

Fig. No.		Page
Fig.(I)	Pathogenesis of SLE	8
Fig.(2)	Disease mechanisms and tissue damage in SLE	12
Fig.(3)	Initial assessment and management of systemic lupus erythematosus patients who receive immunosuppressive therapy and present with fever or other symptoms and signs suggestive of infection	69
Fig.(4)	Percentage of studied SLE patients with infection	107
Fig.(5)	Clinical manifestations in the studied SLE patients	110
Fig.(6)	Drugs consumed by the studied SLE patients	114
Fig.(7)	Sites of infection detected in SLE patients studied with infection	116
Fig.(8)	Types of infectious organisms in SLE patients studied with infection	118
Fig.(9)	Hospitalization among SLE patients studied with infection	119
Fig.(10)	ICU admission among hospitalized SLE patients studied with infection	119
Fig.(11)	Single and combined antibiotic therapy received by the studied SLE patients with infection	120
Fig.(12)	Oral and IV antibiotics received by the studied SLE patients with infection	120
Fig.(13)	Sites of infection in previous infection episodes	129

INTRODUCTION

SLE is a heterogeneous autoimmune disease that may involve many different organs and display a variable clinical course (**Kuo et al.**, **2015**).

The pathogenesis of SLE is complex and still largely unknown. Genetic, environmental, and hormonal factors contribute to disease susceptibility (Marques et al., 2016).

The diagnosis of SLE is based on characteristic clinical findings of the skin, joints, kidneys, and the central nervous system, as well as on serological parameters such as antinuclear antibodies (ANA) (**Petri et al.**, **2012**).

In milder, non-organ threatening disease, antimalarials, low dose steroids, and transient use of NSAIDs is usually effective. For organ threatening disease or illness that is not responding to low doses of GC, immunosuppressants are added (**Kuhn et al., 2015**). MMF or CYC are usually used as the first line treatment for most of severe cases, in addition to GC. For maintenance therapy, either mycophenolate mofetil or azathioprine is preferred (**Aringer et al., 2013**). For refractory disease, biologics and antibody inhibiting strategies, such as IVIG or plasma exchange can be used (**Ding and Gordon, 2013**).

Infections are common in SLE patients and have a great impact on morbidity and mortality. They represent about a quarter of overall mortality in this disease, and up to half of all patients experience at least one severe infection during their course of the disease (Mok et al., 2011).

Types of infections in SLE patients vary widely. They may be bacterial, viral, fungal or even parasitic. Studies, done in this field, have shown that bacterial infections are the most common. Of bacterial infections, streptococcus pneumoniae infection has the highest incidence. It should be known that respiratory tract is the commonest site of infection (Lee et al., 2013).

Infection affects SLE course deeply and most of hospital and ICU admissions of SLE patients are caused by infection. Complications of infection in SLE are more frequent and severe than matched controls in different studies. This can be, mainly, explained by their immunocompromised state (**Fei et al., 2014**).

Some, and not all, of these complications are increasing susceptibility to infection by other organisms at the same time, bactraemia, septicaemia, fibrosis with loss of organ function, and sometimes disseminated intravascular coagulopathy (DIC) (Feldman et al., 2015). Not only the infection, itself, that causes morbidity in SLE, but also treatment of infection can cause some complications (Barrera-Vargas et al., 2014).

Therefore it is important to identify risk factors for infection in the management of SLE patients. Risk factors modification or prophylactic antibiotics use could decrease the incidence or severity of infection, improving the prognosis for SLE patients (**Danza and Ruiz-Irastorza**, 2013).

Genetic risk factors include complement abnormalities, mannosebinding lectin (MBL) defects, C-reactive protein (CRP) deficiency, immunoglobulin abnormalities and defects in cellular immunity (**Prabu** and Agrawal, 2010).

Risk factors for incidence of infection in SLE may be acquired. Acquired risk factors are GC and immunosuppressive therapy, renal and vascular involvement (**Arnaud et al., 2011**).

SLE activity has a clinical picture mimicking, to a large extent, that of infection and in most of times, they cannot be differentiated from each other. Differentiation between the two conditions, either clinical or laboratory, is very important and should be done as early as possible because early correct intervention largely affects the outcome of management regarding both disease flare and infection (**Rigante et al.**, 2014).

Finally, we should follow preventive measures to lessen the burden of infection and its complications in SLE. For prevention and decreasing frequency of infectious episodes in SLE patients, general measures as good hygiene and avoiding sources of infection, should be taken into consideration. Judicious use of GC and immunosuppressants is among methods for prevention of infection. Vaccination and chemoprophylaxis should be used when indicated (**Pasoto et al., 2014**).

AIM OF THE WORK

- To study the prevalence of infection in SLE patients.
- To find out different risk factors of infection in SLE patients.