

Faculty of Veterinary Medicine

Department of Microbiology

Bacterial Contamination Associated With Abdominal Surgeries In Pets (Dogs and Cats)

A thesis presented by:

Dína Abd ElWahab Ezzat Hussien Abu ElGhait

B.V.Sc, Faculty of Veterinary Medicine, Cairo University (2006)

In the partial fulfilment of:

Master Degree in Veterinary Medical Sciences Microbiology

(Bacteriology, Immunology and Mycology)

Under the Supervision of:

Farouk ElAmry

Professor of Microbiology

Department of Microbiology

Faculty of Veterinary Medicine **Cairo University**

Prof.Dr./ Khaled Prof.Dr./ El Dessouky Mohamed Sheta

Professor of Surgery, Anaesthesiology& Radiology

Department of Surgery, Anaesthesiology& Radiology

Faculty of Veterinary Medicine Cairo University

(2015)

Supervision Sheet

This thesis is under the supervision of:

Prof. Dr. Khaled Farouk El- Amry

Professor of Microbiology Faculty of Veterinary Medicine Cairo University.

Prof .Dr. El Dessouky Mohamed El DessoukySheta

Professor of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine Cairo University. Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Dina AbdElWahabEzzatHussien Abu ElGhait

Date of birth: 15/7/1984

Place of birth: Alexandria

Nationality:Egyptian

Scientific degree: Master Degree in Veterinary Medical Sciences

Thesis title:Bacterial Contamination Associated with Abdominal

Surgeries in Pets (dogs and cats)

This thesis is under supervision of:

Prof. Dr. Khaled Farouk El- Amry

Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University.

Prof .Dr. El Dessouky Mohamed El Dessouky Sheta

Professor of Surgery, Anesthesiology and Radiology

Faculty of Veterinary Medicine, Cairo University.

Abstract

Various impacts can be attributed to SSIs. Some, such as patient morbidity, patient mortality and increased treatment costs, are readily quantifiable. Others, such as client frustration and grief, veterinary frustration, potential liability and negative public perceptions may be very important but difficult to evaluate.

Swab samples for bacteriology testing were taken from thirty pets (7dogs and 23 cats) during different abdominal operations (15cesarean section, 10 ovariohysterictomy, and 5 hernia) for detection of bacterial contamination associated with abdominal surgeries in pets. Infection rate was 53.3%(16 positive cases out of 30) and different nine isolates were identified Escherichia coli was the most prevalent finding (6/16 [37.5%]), followed [31.25%]),then Aerococcus by coagulase- negative staphylococci (5/16 [18.75%]),and viridians (3/16)Klebsiella pneumonia (3/16)[18.75%]),then Streptococci (mitis and acidominimus) (2/16 [12.5%]),also Enterobacter aerogens (2/16)[12.5%]), Staphylococcus aureus (1/16)[6.25%]Pseudomonas [6.25%]), Enterococcus faecalis(1/16 and aeroginosa (1/16 [6.25%]).All isolates were subjected to antibiogram sensitivity and determination of only one Staphylococcus aureus(MRSA), beta-lactamase) 11 **ESBL** (extended-spectrum producing strains of Enterobacteriaceae, and also 5 MDR isolates were identified.

DEDICATION

TO

MY MOTHER

TO MY HUSBAND & MY KIDS

ALSO TO MY ONLY SISTER

FOR THEIR SACRIFICING& DEVOTION SUPPORTING ME TO DO MY BEST

Acknowledgement

First of all, I would like to express my all-embracing gratitude and praise to **ALLAH**, **Glorified be He**, for his unmitigated support and graceful benevolence in carrying out this humble thesis.

I would like to offer my sincerest gratitude to my supervisor *Prof. Dr., Khaled Farouk El-Amry*, Professor of Microbiology and Immunology,
Microbiology department, faculty of Veterinary medicine, Cairo University
who has supported me throughout my thesis with his patience and
knowledge, motivation and provided me with all the necessary facilities for
this thesis.

I would like to express my sincere gratitude to *Prof. Dr. EL Dessouky Mohamed El Dessouky Sheta*, Professor of Surgery, Anaesthesiology, and Radiology department, faculty of Veterinary medicine, Cairo University for the continuous support of this study, for his encouragement, insightful comments and effort.

I would like to express my deepest appreciation to *Dr. Ahmed Samir*, Assistant Professor of Microbiology, faculty of Veterinary medicine, Cairo University who provided me the possibility to complete this thesis and his guidance helped me in all the time of research and writing of this thesis.

Furthermore; thanks to the staff members of the department of Microbiology and the department of Surgery, Anaesthesiology, and Radiology, faculty of Veterinary medicine, Cairo University and all workers in these departments for their help and support to finish this work.

List of Contents

Subject	Page
Introduction and Aim of the work	1
Review of literature	4
Materials and Methods	54
Results	84
Discussion ● Conclusion	101
Summary	114
References	116
Arabic summary	

List of Abbreviations

Abbreviation	Scientific meaning
A. viridans	Aerococcus viridans
AK	Amikacin
AMC	Amoxicillin-clavulanic acid
AMP	Ampicillin
ARE	Ampicillin Resistant Enterococci
ASA	American Society of Anesthesiology
ATM	Aztreonam
BHI	Brain Heart Infusion Agar
С	Chloramphenicol
Cat. no	Catalog number
CAZ	Ceftazidime
CDC	Centers for Disease Control and Prevention
CFP	Cefoperazone
CFR	Cefadroxil
CIP	Ciprofloxacin
CLSI	The Clinical and Laboratory Standards Institute
CRO	Ceftriaxone
CTC	Cefotaxime-clavulanic acid
CTX	Cefotaxime
CVMA	Canadian Veterinary Medical Association
CXM	Cefuroxime
CZC	Ceftazidime-clavulanic acid
DA	Clindamycin
E	Erythromycin
E. aerogenes	Enterobacter aerogenes
E. coli	Escherichia coli
E. faecalis	Enterococcus faecalis
EPA	Environmental Protection Agency
ESBL	Extended-Spectrum-Beta-Lactamase

F.	Family
FEP	Cefepime
FOX	Cefoxitin
GM	Gentamicin
HLA	Human leukocyte antigen
I/M	Intramuscular
I/V	Intravenous
ICU	Intensive care unit
ID	Identification
IPM	Imipenem
K. pneumoniae	Klebsiella pneumoniae
KZ	Cefazolin
LIA	Lysine iron agar
MDR	Multi drug resistant
MIO	Motility indole ornithine
MRSA	Methicillin-resistant Staphylococcus aureus
MRSP	Methicillin-resistant Staphylococcus pseudintermedius
NNIS	National Nosocomial Infections Surveillance
O2	Oxygen
ODC	Ornithine decarboxylase
OHE	Ovariohysterectomy
OR	Operating Room
Р	Penicillin
P. aeruginosa	Pseudomonas aeruginosa
P. mirabilis	Proteus mirabilis
P/O	Per Os
PFGE	Pulsed field gel electrophoresis
PJI	Prosthetic joint infection
PYR	L-pyrrolidonyl-β-naphthylamide
R	Resistant
RA	Rifampicin
RCT	Randomized Controlled Trial
S	Sensitive

S. acidominimus	Streptococcus acidominimus
S. aureus	Staphylococcus <i>aureus</i>
S. mitis	Streptococcus mitis
S/C	SubCutaneous
SAM	Ampicillin/Sulbactam
SCCmec	Staphylococcal chromosome cassette mec
Spp.	Species
SSI	Surgical site Infection
SSIs	Surgical site Infections
SXT	Trimethoprim/sulfamethoxazole
TE	Tetracycline
TPLO	Tibial Plateau Leveling Osteotomy
TSI	Triple Sugar Iron
TZP	Piperacillin-Tazobactam
U.S. CDC	United States Centers for Disease Control and Prevention
US	United States
UTI	Urinary tract infections
VA	Vancomycin
VRE	Vancomycin Resistance in Enterococci

List of Tables

Table No.	Title	Page
1	Isolated pathogens in the canine surgical site infections.	39
2	Demographic data of animals.	54
3	Performed operations in correlation to animals.	55
4	Biochemical tests for identification of Gram negative bacteria.	81
5	Number of (positive and negative) samples in correlation to the performed operations	85
6	Number of animals and (positive and negative) samples in correlation to the performed operations.	86
7	Number of positive and negative samples in correlation to Cesarean section.	87
8	Number of positive and negative samples in correlation to Ovariohysterectomy.	88
9	Number of positive and negative samples in correlation to Hernia.	89
10	The number of different isolated bacterial microorganisms in all operations.	94
11	The number of different isolated bacterial microorganisms in Cesarean section.	95
12	The number of different isolated bacterial microorganisms in Ovariohysterectomy.	96

13	Antibiogramsensitivity for Enterobacteriacae.	97
14	Antibiogramsensitivity for Pseudomonas aeruginosa.	98
15	Antibiogramsensitivity for Staphylococcus aureus.	99
16	Antibiogramsensitivity for streptococci.	100

List of Figures

Figure No.	Title	Page
1	CDC classification of surgical site infection (public domain)	21
2	Abdominal operation (ovariohystrectomy).	56
3	Abdominal operation (hernia).	56
4	Number of positive and negative samples in correlation to the performed operations.	85
5	Number of animals and (positive and negative) samples in correlation to the performed operations.	86
6	Number of positive and negative samples in correlation to Cesarean section.	87
7	Number of positive and negative samples in correlation to Ovariohysterectomy.	88
8	Number of positive and negative samples in correlation to Hernia.	89
9	Gram positive Staphylococci arranged in irregular clusters (351X448).	90
10	Staphylococcus aureus on mannitol salt agar.	90
11	E.coli on MacConkey agar medium.	91
12	Biochemical tests for <i>Enterobacteriaceae</i> (TSI, LIA, MIO, citrate and urease).	91
13	PYR test.	92

14	Antibiogram sensitivity for <i>E. coli</i> (ESBL).	92
15	Antibiogram sensitivity for <i>Aerococcus viridians</i> (sample no:12)	93
16	API 20 STREP.	93
17	The number of different isolated bacterial microorganisms in all operations.	94
18	The number of different isolated bacterial microorganisms in Cesarean section.	95
19	The number of different isolated bacterial microorganisms in Ovariohysterectomy.	96
20	MDR isolates.	98

1. INTRODUCTION

Nosocomial infections are hospital acquired infections which may be localized or systemic form acquired by the patient who was admitted for reasons other than infection, because of the existence of an infectious agent or its toxin which was not present or incubating at the time of hospital admittance (**Horan** *et al.*, **2008**).

The occurrence of nosocomial infections in veterinary hospitals has not been well established and in nascent stage (Morley, 2004; Smith, 2004; Traub-Dargatz *et al.*, 2004; Morley and Weese, 2008).

Surgical site infections (SSIs) are among the most common nosocomial infections in human patient populations, accounting for 16% of such infections in all patients and 38% of nosocomial infections among surgical patients in the United States (Mangram *et al.*, 1999).

Although similar reporting of nosocomial infections does not exist in the veterinary field, SSI has been described as a complication of 0.8% to 18.1% of small animal surgical procedures, with significant variation associated with surgery type (Vasseur et al.,1985; Vasseur et al.,1988; Whittem et al.,1999; Beal et al.,2000; Eugster et al., 2004; Weese et al., 2006; and Weese, 2008).