Enhancement the Bioavailability of Fenofibrate using Self emulsifying Microspheres and Dry emulsion

A thesis submitted

By

Dina Mohamed Abd El Aty

Bachelor of Pharmaceutical Sciences, 2006, Ain Shams University

Teaching assistant, Department of Pharmaceutics and Industrial Pharmacy,

Ain Shams University.

For the partial fulfillment of the requirements for the Master Degree in the Pharmaceutical Sciences

(Pharmaceutics)

Under the supervision of

Prof. Dr. Ahmed Shawky Geneidi

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Prof.Dr. Samar Mansour Holayel

Professor of Pharmaceutics and Industrial

Pharmacy, Faculty of Pharmacy, Ain Shams

University

Dr. Amany Osama Kamel

Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams

University

Department of Pharmaceutics and Industrial pharmacy
Faculty of Pharmacy
Ain Shams University
(2015)

Acknowledgment

First and foremost thanks to God for helping me to fulfill this work.

I would like to express my deepest appreciation and sincere gratitude to **Professor Dr. Ahmed Shawky Geneidi,** Professor of Pharmaceutics and Industrial Pharmacy,

Faculty of Pharmacy, Ain Shams University, for his instructive supervision, kind help

and generous attitude throughout the development of this work.

I offer my sincerest gratitude to my supervisor, **Professor Dr Samar Mansour Holayel**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who has supported me throughout my thesis with her patience and knowledge and provided me extensive personal and professional guidance and taught me a great deal about both scientific research and life in general.

I would especially like to thank **Dr. Amany Osama Kamel**, Associate professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, as my teacher and mentor; she bore a lot of work load until this thesis was completed and taught me more than I could ever give her credit for here. One simply could not wish for a better or friendlier supervisor.

I would especially like to thank, **Dr. Ahmed Hassan El shafeey**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, for his valuable advice and sincere work in completing the in vivo studies.

I also like to thank all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy for their valuable help, support and encouragement.

I would for no sure forget my son (Mahmoud) who was beside me in every step till the end of my thesis. A special debt of gratitude is gladly acknowledged to him for his help in enduring all the hardships throughout this work.

Finally I would like to express my deepest thanks to my parents, for their patience throughout the whole work carried out in this thesis.

	Acki	ıowle	dgment
--	------	-------	--------

Abstract

Oral administration of fenofibrate (FF) is considered a practical route of administration for enhancing the bioavailability of the drug. However poor solubility of the drug as well as poor absorption is some of the major limitations which should be overcome when considering this route. Self emulsifying microspheres (SEM) by virtue of forming the drug in a molecular form as solid dispersion and small particle size can greatly enhance the drug absorption. Incorporation of the drug in lyophilized dry emulsion provides higher dissolution and better bioavailability. The objective of this study was to prepare FF loaded self emulsifying microspheres and lyophilized dry emulsion for the oral route to improve the drug bioavailability and provide high blood levels of fenofibric acid which is the active metabolite of fenofibrate.

FF loaded self emulsifying microspheres were successfully prepared using quasi solvent diffusion method to form the drug in a molecular form and FF loaded lyophilized dry emulsion was successfully prepared by lypholization to enhance the dissolution and the bioavailability of the drug. A full factorial design was constructed for the self emulsifying microspheres to study the influence of four independent variables namely; the type of the polymer, the amount of Aerosil, the amount of talc and the type of the oil. The dependent variable was the entrapment efficiency percentage (EE %). Bioavailability and pharmacokinetic study of fenofibrate self-emulsifying microspheres and dry emulsion in human volunteers was performed for the selected FF self emulsifying microspheres and dry emulsion formulations. FF loaded dry emulsion showed smaller particle size and higher entrapment efficiency (EE %) compared to their alternative self emulsifying microspheres. Also they had higher dissolution pattern than alternative self emulsifying microspheres. Both self emulsifying microspheres and dry emulsion showed good stability up to six months. FF loaded self emulsifying microspheres and dry emulsion which showed reasonable entrapment efficiency (63% and 74%) were selected for further comparative studies. FF loaded self emulsifying microspheres (F6) were

prepared by quasi solvent diffusion method using drug loaded in castor oil (0.8) gm containing 0.667 gm drug), Polymer: HPMC AS LF (0.1 gm), Aerosil 200:0.4 g, Talc:0.5 g, while dry emulsion (E6) was prepared by the same components using lypholization technique. Both self emulsifying microspheres and dry emulsion had high values of yield, high drug loading, small angle of repose, small particle size and high values of entrapment. It should be mentioned that dry emulsion has higher values of yield, higher drug loading, smaller angle of repose, smaller particle size and higher values of entrapment. Both self emulsifying microspheres and dry emulsion are capable of formation of microemulsion upon contact with the intestinal fluid. The microemulsion formed by the microspheres and dry emulsion was characterized for spontaneity of self-emulsification, droplet size and polydispersity index analysis, viscosity, zeta potential, Count rate, Conductivity and %Transmittance. DSC studies of the microspheres and dry emulsion showed low crystallinity indicating the presence of drug in amorphous form. The pharmacokinetics in human plasma showed that the relative bioavailability of self emulsifying microspheres and dry emulsion was enhanced compared to that of the market product (Lipanthyl ®) with values of 265.52% and 243%, respectively. It is worthy to note that the method of preparation had a significant effect on the bioavailability of fenofibrate, as evidenced by the significantly shorter (T_{max}) of lyophilized dry emulsion (E6) compared to self emulsifying microspheres (F6), with values of 2.00 and 2.50 hr, respectively.

Therefore, this study revealed that enhanced absorption of fenofibrate formulated in the form of self emulsifying microspheres and dry emulsion following its oral administration is due to enhancement of the dissolution of the drug.

Keywords: Oral drug delivery; Self emulsifying microspheres; Dry emulsion; Fenofibrate; Bioavailability.

List of Contents

Abbreviation List	i
ListofTables	iv
List of Figures	vii
Abstract	X
General Introduction	1
Scope of work	20
Chapter I: Preparation and evaluation of FF self emulsifying microspheres	
Introduction	2
Experimental	
Methodology	29
I. Determination of λ_{max} and construction of calibration curve of Fenofibrate in diff	erent
media	29
II.Solubilitystudies	29
III.Preparation of fenofibrate self-emulsifying microspheres	30
IV. Preliminary study of the influence of various formulation parameters on the	
preparation of FF loaded microspheres	30
1) Effect of polymer grade	30
2) Effect of oil type	31
3) Effect of the amount of aerosil	31
4) Effect of the amount of talc	31
V- Factorial design of the experiments	33
VI-Characterization of the prepared self-emulsifying microspheres	35
A-Characterization of the microspheres	35
1-Yield	35
2- Determination of FF entrapment efficiency percentages (EE %) and drug	
loading	36
3- Flow properties	36
4- Particle size analysis of the microspheres	37
5- Particle morphology using transmission electron microscopy	37
6- Scanning electron microscopy	3
7- In-vitro release studies	3

8- Differe	ential scanning calorimetery
9- Effect	ofAging38
B- Charac	cterization of the formed microemulsion
1-Spontar	neity of self-emulsification39
2-Droplet	size and polydispersity index analysis39
3- Viscos	ity
4-Zeta po	tential40
5- Count	rate40
6- Condu	ctivity40
7- Percen	t transmittance40
VII- Stati	stical analysis41
Results a	nd Discussion
I-	Determination of λ_{max} and construction of calibration curve of fenofibrate in different media
II- III- IV-	Solubility Studies
V-	Morphology.591- Optical microscopy.592 Transmission electron microscopy.603- Scanning electron microscopy.60
VI- VII- VIII- IX-	In vitro release of FF from drug loaded microspheres.61Differential scanning calorimetry (DSC).67Effect of aging.68Characterization of the formed microemulsion.70ion.72
Chapter	
Prepara	tion and evaluation of FF dry emulsion
Introduc	tion74
Stages of	the complete drying process
1) P r	retreatment

2) Freezing	
3) Primary drying	
4) Secondly drying	
Experimental	80
Methodology	83
I. Preparation of FF dry emulsion	83
II. Characterization of the prepared dry emulsions	
A) Characterization of the dry emulsion	
1- Yield	84
2- Determination of FF entrapment efficiency percentages (EE	
drug loading	
3- Flow properties	
4- Particle size analysis and morphology of the dry emulsion	
5- In-vitro release studies	
6- Differential scanning calorimeter	
B) Characterization of the formed microemulsion	
III. Statistical analysis	
•	
Results and Discussion	87
I- Characterization of dry emulsion	87
II- Morphology	
1- Optical microscopy	
2- Transmission electron microscopy	90
III- <i>In vitro</i> release of FF from drug loaded dry emulsion	90
IV- Differential scanning calorimetry	
V- Effect of aging	
VI- Characterization of the formed microemulsion	100
Conclusion	102
Chapter III	
•	1.0.
Bioavailability and pharmacokinetic study of fenofibrate self – em	iulsifying
microspheres and dry emulsion in human volunteers	
Introduction	103
Experimental	105
Methodology	107
I- LC-MS/MS assay of Fenofibric acid in human plasma	107
A- Chromatographic conditions	107
B- Method validation	
1- Calibration curve of Fenofibric acid in human plasma	108

2- Recovery	108
3- Accuracy and precision	
II- Pharmacokinetic study in healthy volunteers	109
A- Subject selection	109
B- Study design and drug administration	109
C- Sample collection	110
D- Sample preparation	110
Results and Discussion	112
Conclusion	122
Summary	123
Reference	130
Ethical committee Approval	147
Arabic summary	1

List of Abbreviations

Adv Advanced

AHA American Heart Association

Alex Alexandria

ANOVA Analysis of variance

apoA-I Apolipoprotein A-I

apoA-II Apolipoprotein A-II

APOB Apolipoprotein B

AUC₀₋₂₄ Area under the plasma concentration-time curve

BCS Biopharmaceutical classification system

BS Bile salt

C Carbon

CHL Cholesterol

C.V Coefficient of variance

C/L Coconut/labrasol

CE Collision energy

C_{max} Peak plasma concentrations

°C Celsius

Co Company

cp Centipoise

CXP Collision exit potential

CYP450 Cytochrome P450

D Drugs

DE Dry emulsion

df Degree of freedom

DP Declustering potential

DSC Differential scanning calorimetry

EE % Entrapment efficiency percent

EP Entrance potential

FDA Food and drug administration

FF Fenofibrate

GI Gastro intestinal

GIT Gastro intestinal tract

HCHOLA3 Hypercholesterolemia autosomal dominant, 3

HDL High density lipoprotein

HLB Hydrophilic lipophilic balance

HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A

HPMC Hydroxy propyl methyl cellulose

HPMC AS Hydroxypropyl methylcellulose acetate succinate

HPMC AS LF Hydroxy propyl methyl cellulose acetate succinate fine form

HPMC AS LG Hydroxypropyl methylcellulose acetate succinate granular

form

IDL Intermediate density lipoprotein

Int. J.Pharm International journal of pharmaceutics

IS Internal standard

LC-MS/MS Liquid chromatography mass spectrometry

LCT Long chain triglycerides

LDL Low density lipoprotein

LDL Low density lipoprotein

LDLRAP1 Low density lipoprotein receptor adaptor protein

Lz Elimnation rate constant

M Molar

M/N Maisine /nigella

m/z Mass/charge ratio

MCT Medium chain triglycerides

MRM Multiple reaction monitoring

MRT Mean residence time

nm Nanometer

O/W Oil in water

P Probability

PCSK9 Proprotein convertase subtilisin/kexin type 9

PDI Polydispersity index

PEG Poly ethylene glycol

P-gp P-glycoprotein

PL Phospholipids

PPARs Peroxisome proliferator-activated receptors

PPARα Peroxisome proliferator-activated receptor α

psi, Pound per square inch

r² Coefficient of determination

SCT Short chain triglycerides

SD Standard deviation

SE Self-emulsifying

SEDDS Self emulsifying drug delivery system

SEM Self emulsifying microspheres

SES Self-emulsifying systems

SLN Solid lipid nanoparticles

SLS Sodium lauryl sulphate

SMEDDS Self-micro emulsifying drug delivery systems

SNEDDS Self-nano emulsifying drug delivery system

S-SEDDS Solid self emulsifying drug delivery system

T% Transmittance Percentage

TEM Transmission electron microscope

TG Triglyceride

Tg glass transition temperature

 T_{max} Time needed to reach maximum concentration of active metabolite

TPGS Tocopheryl polyethylene glycol 1000 succinate

VLDL Very low density lipoprotein

wt/wt Weight per weight

ZS Zeta sizer

 λ_{max} . Lambda of maximum absorption

Az Terminal elimination rate constant

List of Tables

Table	Table Name	Page
no:		no:
1	Composition of different FF self-emulsifying microspheres used in	32
	the preliminary study.	
2	The factorial design of independent variables and their levels for the	34
	preparation of FF loaded microspheres.	
3	Composition of different FF formulae according to the factorial	35
	design.	
4	Solubility of FF in different oils.	48
5	Effect of various formulation parameters on the entrapment	52
	efficiency and particle size.	
6	Yield, DL, flowability, particle size and EE of the prepared FF	55
	microspheres according to the factorial design.	
7	ANOVA for EE% response of FF loaded SEM according to the	57
	factorial design.	
8	Release data from castor oil microspheres in HCl pH 1.2 for two	63
	hours followed by phosphate buffer pH=6.8 both containing 0.025 M	
	SLS.	
9	Release data from maisine/nigella oil microspheres in HCl pH 1.2 for	65
	the first two hours followed by phosphate buffer pH=6.8 both	
	containing 0.025 M SLS.	

13	Release data from coconut/labrasol oil microspheres in HCl pH 1.2	66
	followed by phosphate buffer pH 6.8 both containing 0.025 M SLS.	
10	Release data from maisine/nigella oil microspheres in HCl pH 1.2 for	66
	the first two hours followed by phosphate buffer pH=6.8 both	
	containing 0.025 M SLS.	
11	The release data of formula F6 after six months.	69
12	Characterization of the formed FF microemulsion.	71
13	Composition of different FF dry emulsion formulations	84
14	Yield, DL, flowability, particle size and EE of the prepared FF dry	88
	emulsions.	
15	Release data from castor oil dry emulsion in HCl pH 1.2 for the first	92
	two hours followed by phosphate buffer pH=6.8 both containing	
	0.025 M SLS.	
16	Release data from maisine/nigella oil dry emulsion in HCl pH 1.2 in	94
	the first two hours followed by phosphate buffer PH=6.8 both	
	containing 0.025 M SLS.	
17	Release data from coconut/labrasol oil dry emulsion in HCl pH 1.2	96
	for the first two hours followed by phosphate buffer pH 6.8 both	
	containing 0.025 M SLS.	
18	The release data of E6 after six months.	99
19	Characterization of the FF microemulsion formed by the dry	101
	emulsion.	
20	Relation between fenofibric acid concentration and the peak area	113
	ratio of fenofibric acid /IS in spiked human plasma.	
21	Recovery data of fenofibric acid from spiked human plasma.	115
22	Within-day precision of the LC-MS/MS method for fenofibric acid	116
	determination in human plasma.	
L	<u>I</u>	l