

Biological Studies on the Effect of Some Nano-Materials Used in Processing Military Protection Wears on the Skin

A THESIS SUBMITTED FOR THE AWARD OF THE MASTER DEGREE OF SCIENCE (IN ZOOLOGY)

By

Sameh Mohamed Mohamed Abouzead

(B.Sc.)

Supervised by

Dr. Nagui Hassan Fares

Professor of Cell Biology and Histology - Zoology Department Faculty of Science Ain Shams University

Dr. Mohamed Abdelmordy Mohamed

Professor of Genetics and Molecular Biology - Zoology Department Faculty of Science Ain Shams University

Dr. Yomna Ibrahim Mahmoud

Assistant Professor of Histology and Cell Biology Zoology Department-Faculty of Science Ain Shams University

> Ain shams university Faculty of Science Zoology Department

9

بِنِيْ الْمُؤْلِدُ اللَّهِ الْمُؤْلِدُ اللَّهِ الْمُؤْلِدُ اللَّهِ الللَّهِ اللَّهِ اللَّهِ الللَّهِ اللَّهِ اللَّهِ الللَّهِ اللّهِ اللللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ اللللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ اللَّهِ الللللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللللَّهِ اللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللللَّاللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ الللَّهِ اللَّهِ الللَّهِ الللللَّهِ الللَّهِ الللَّالِيلِي اللللللللَّا

يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِيرٌ

ظَلَقَالِهُ اللَّهُ اللَّهُ اللَّهُ عَلَيْنَا

المجاولة: 11}

DEDICATION

I dedicate this work to all my family specially to the soul of my father, to my mother, my wife and my children for their support, quiet patience and unwavering love.

Thank for you all

ACKNOWLEDGEMENTS

Throughout this work I have required the guidance and technical assistance from a great number of people on frequent occasions, and I have never been met with anything but politeness and enthusiasm. First and foremost, I would like to record my great debts of gratitude to the supervisors of my thesis: **Prof. Dr. Nagui Hassan Fares** (Professor of Cell biology and Histology), Prof. Dr. Mohamed Abdelmordy Mohamed (Professor of Genetics and Molecular biology), and Dr. Yomna **Ibrahim Mahmoud** (Assistant Professor of Histology and Cell Biology). This experience would certainly not have been as valuable without their guidance, support, and inspiration. I have no words to express my appreciation for their valuable suggestions, unfailing help, intellectual criticisms and moral support throughout the study. They had confidence in me when I doubted myself, and encouraged me and brought out the good ideas in me. I am sure that they will be remembered in all my future endeavors. I feel really blessed to work under their guidance and I am truly rewarded.

Sameh Abouzead

CONTENTS

CONTENTS	i
List of Abbreviations	iv
List of Tables	vii
List of Figures	viii
ABSTRACT	xxi
INTRODUCTION	1
AIM OF THE WORK	4
LITERATURE REVIEW	5
1. Zinc Oxide Nanoparticles (ZnO-NPs)	7
1.1. Military Wears Applications	7
1.2. Toxicity and Hazardous Health Effects	9
2. Titanium Dioxide Nanoparticles (TiO ₂ -NPs)	16
2.1. Military Wears Applications	16
2.2. Toxicity and Hazardous Health Effects	18
3. Carbon black Nanoparticles (CB-NPs)	26
3.1. Military Wears Applications	26
3.2. Toxicity and Hazardous Health Effects	27
MATERIALS AND METHODS	33
I- MATERIALS	33
1. Chemicals and Reagents	33
1.1. Nanoparticles (NPs)	33
1.2. Chemicals and Reagents	33
2. Animals	33
II- METHODS	34
1. Nanoparticles (NPs) Characterization	34
1.1. Scanning Electron Microscope Analysis	34
1.2. X-ray Fluorescence Analysis	35
2. Animals Preparation and Treatment	37

3. The Histological Studies	39
3.1. Macroscopic Manifestations	39
3.2. Light Microscopy	40
3.3. Electron Microscopy	44
3.4. Morphometric and Statistical Analysis	48
4. Molecular and Biochemical Genetic Studies	49
4.1. Glutathione Enzymes	49
4.1.1. Tissue homogenate preparation	49
4.1.2. Glutathione- S-Transferase (GST) activity	49
4.1.3. Glutathione Reduced (GSH) Level	50
4.1.4. Glutathione Reductase (GR) activity	51
4.1.5. Statistical Analysis	52
4.2. Nonspecific Esterases (Est.) Electrophoresis	52
4.3. General Proteins Electrophoresis	58
RESULTS AND OBSERVATIONS	63
I- Nanoparticles (NPs) Characterization	63
1. Scanning Electron Microscope (SEM)	63
2. X-Ray Fluorescence (XRF)	64
II- Histological and Ultrastructural Studies	69
1. The Control	69
2. Group I (ZnO-NPs treatment)	86
3. Group II (TiO ₂ NPs treatment)	116
4. Group III (CB-NPs treatment)	150
III- Morphometric and Statistical Results	206
1. Group I (ZnO-NPs treatment)	206
2. Group II (TiO ₂ -NPs treatment)	208
3. Group III (CB-NPs treatment)	210
IV- Molecular and Biochemical Genetics Results	212
1. Glutathione Enzymes	212
1.1. Group I (ZnO-NPs treatment)	212
1.2. Group II (TiO ₂ -NPs treatment)	213

1.3. Group III (CB-NPs treatment)	214
2. Nonspecific Esterases (Est.) Electrophoresis	222
2.1. Group I (ZnO-NPs treatment)	222
2.2. Group II (TiO ₂ -NPs treatment)	227
2.3. Group III (CB-NPs treatment)	233
3. General Proteins Electrophoresis	239
3.1. Group I (ZnO-NPs treatment)	239
3.2. Group II (TiO ₂ -NPs treatment)	242
3.3. Group III (CB-NPs treatment)	246
DISCUSSION	251
SUMMARY	277
REFERENCES	283
Arabic Summary	313

List of Abbreviations

A549 Human alveolar epithelial cell line

ANOVA Analysis of Variance

BAL Broncho-Alveolar Lavage cell line

BEAS-2B Human bronchial epithelium cell line

Caco-2 Human Colorectal adeno-carcinoma cell line

CB-NPs Carbon Black Nanoparticles

CDNB 2,4-Dinitrochlorobenzene

DMEM Dulbecco's Modified Eagle's medium

DTNB 1-Chloro-2,4-Dinitrobenzene

E. coli Escherichia coli

EDTA Ethane-1,2-Diyldinitrilo Tetra-Acetic acid

EDX Energy Diffraction X-ray spectrum

ELISA Enzyme Linked Immune Sorbent Assay

ESTs Esterases

FTIR Fourier Transform Infra-Red spectroscopy

GR Glutathione Reductase

GSH Reduced Glutathione

GSSG Oxidized Glutathione

GST Glutathione-S-Transferase

HaCaT Human keratinocytes cell line

HDF Human Dermal Fibroblasts cell line

HUVECs Human umbilical Vein Endothelial cells

ICP-mass Inductively Coupled Plasma mass spectroscopy

IR Infrared

K. pneumonia Klebsiella pneumonia

KDa kilodalton

L-132 Human lung epithelial cells

LDH Lactate Dehydrogenase

LM Light Microscope

MDA Malondialdehyde

MMPs Matrix Metalloproteinase

MTS Methylthiazol Tetrazolium Salt

MTT Mitochondria cell viability assay

NADPH Nicotinamide Adenine Dinucleotide Phosphate-oxidase

NMs Nanomaterials

N-PAGE Native Polyacrylamide Gel Electrophoresis

NPs Nanoparticles

NTMPW Nano-Treated Military Protection Wears

PBS Phosphate Buffered Saline

PCR Polymerase Chain Reaction

RAW264.7 Mouse monocyte macrophage cell line

REF-3 Rat Embryo Fibroblast cell line

Rm Relative mobility

ROS Reactive Oxygen Species

RT-PCR Real-Time quantitative PCR

S. aureus Staphylococcus aureus

S. epidermidi Staphylococcus epidermidis

SC Stratum Corneum

SD Standard Deviation

SDS Sodium Dodecyl Sulfate

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel

Electrophoresis

SEM Scanning Electron Microscope

SG Stratum Granulosum

SOD Super Oxide Dismutase

SS Stratum Spinosum

TEM Transmission Electron Microscopy

TEMED Tetramethylethylenediamine

TiO₂-NPs Titanium dioxide Nanoparticles

TOF-SIMS Time of Flight Secondary Ion Mass Spectrometry

UV Ultraviolet

UV-VIS Ultraviolet–Visible Spectroscopy

X Mean

XRD X-Ray Diffraction

XRF X-ray Fluorescence

ZnO-NPs Zinc Oxide Nanoparticles

List of Tables

Table.1:	Characteristics of the experimental NPs	33
Table.2:	The experimental groups	38
Table.3:	The result of XRF analysis of ZnO-NPs	68
Table.4:	The result of XRF analysis of TiO ₂ -NPs	68
Table.5:	The result of XRF analysis of CB-NPs	68
Table.6:	Summary of the mean thickness of nucleated epidermal keratinocytes in the skin of rabbits treated with ZnO-NPs (Group I) and their relations	20
Table.7:	Summary of the mean thickness of nucleated epidermal keratinocytes in the skin of rabbits treated with TiO ₂ -NPs (Group II) and their relations	209
Table.8:	Summary of the mean thickness of nucleated epidermal keratinocytes in the skin of rabbits treated with CB-NPs (Group III) and their relations	21
Table.9:	Activities of Glutathione- S-Transferase (GST) and Glutathione Reductase (GR), and Glutathione Reduced (GSH) level in the skin of rabbits after exposure to different treatments of ZnO-NPs	210
Table.10	: The activities of Glutathione- S-Transferase (GST) and Glutathione Reductase (GR), and Glutathione Reduced (GSH) level in the skin of rabbits after exposure to different treatments of TiO ₂ -NPs	218
Table.11	: The activities of Glutathione- S-Transferase (GST) and Glutathione Reductase (GR), and Glutathione Reduced (GSH) level in the skin of rabbits after exposure to different treatments of CB-NPs	220
Table.12	: The relative activities of esterase bands of ZnO-NPs treated skin utilizing α-naphthyl acetate	220
Table.13	: The relative activities of esterase bands of TiO ₂ -NPs treated skin utilizing α-naphthyl acetate	232
Table.14	: The relative activities of esterase bands of CB-NPs treated skin utilizing α -naphthyl acetate	238

List of Figures

Figure.1:	SEM micrograph displaying the surface morphology, particle size distribution and the aggregation status of ZnO-NPs
Figure.2:	The EDX spectrum of ZnO-NPs showing the elemental composition
Figure.3:	SEM micrograph displaying the surface morphology, particle size distribution and the aggregation status of TiO ₂ -NPs
Figure.4:	The EDX spectrum of TiO ₂ -NPs showing the elemental composition
Figure.5:	SEM micrograph displaying the surface morphology, particle size distribution and the aggregation status of CB-NPs.
Figure.6:	The EDX spectrum of CB-NPs showing the elemental composition
Figure.7:	(a) Photograph of a control rabbit showing healthy animal with normal activity and behavior with no signs of spasm. (b) Dorsal view of a control rabbit showing a shaved skin area with no lesions, erythema or edemas.
Figure.8:	Photomicrograph of section of skin of the control group revealing the epidermis organized into four layers, H&E.
_	Photomicrograph of semithin section of skin of the control group showing the epidermal layers
Figure.10	Photomicrograph section of the dermis of a control skin, H&E.

Figure.11:	Electron micrograph of the upper portion of the epidermis of a control skin
Figure.12:	Electron micrograph of upper epidermis of a control skin
Figure.13:	Electron micrograph showing a part of the stratum spinosum layer of a control skin
Figure.14:	High magnification electron micrograph of a part of stratum spinosum layer of a control skin
Figure.15:	Electron micrograph showing a part of lower epidermis of a control skin
Figure.16:	High magnification electron micrograph of a part of the basal layer cell of a control skin
Figure.17:	Electron micrograph of the dermis of a control skin.
Figure.18:	Photograph of a IB sub-group rabbits after treatments with 0.5 % ZnO-NPs for 24, 48 and 72 time periods showing normal skin appearance with no erythema, edema or scars formation
Figure.19:	Photograph of a IC sub-group rabbits after treatments with 1.0 % ZnO-NPs for 24, 48 and 72 time periods showing normal skin appearance with no erythema, edema or scars formation.
Figure.20:	Photograph of a ID sub-group rabbit after the topical application of 2.0 % ZnO-NPs for 24hrs showing a healthy skin with no lesions, erythema or edemas
Figure.21:	Photograph of a ID sub-group rabbits after the topical application of 2.0 % ZnO-NPs for 48hrs showing definite erythema ranged from slight to moderate, and a slight edema with defined edges

Figure.22:	Photomicrograph of section of a ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs), H&E
Figure.23:	Photomicrograph of semi-thin section from a ID subgroup treated skin (ZnO-NPs 2.0 % / 48hrs) 98
Figure.24:	Electron micrograph of the upper epidermis of a ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs) revealing the abnormal thickening of stratum corneum layer.
Figure.25:	Electron micrograph of the upper epidermis of a ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs) showing a part of stratum granular layer cell
Figure.26:	Electron micrograph of a part of stratum spinosum layer of the epidermis of ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs)
Figure.27:	High magnification electron micrograph of a part of stratum spinosum layer of the epidermis of ID subgroup treated skin (ZnO-NPs 2.0 % / 48hrs)
Figure.28:	Electron micrograph of the lower epidermis of a ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs) showing part of a basal layer cell with normal structure
Figure.29:	Electron micrograph of a part of hair follicle (HF) of a ID sub-group treated skin (ZnO-NPs 2.0 % / 48hrs)
Figure.30:	Photograph of a ID sub-group rabbit after the topical application of 2.0 % ZnO-NPs for 72hrs showing well defined red patches which could be regarded as sever erythema. Scattered edemas formation throughout the test area was also noted, however, no gross lesions were present

Figure.31:	Photomicrograph of section from a ID sub-group treated skin (ZnO-NPs 2.0 % / 72hrs), H&E 10
Figure.32:	Photomicrograph of semithin section from a ID subgroup treated skin (ZnO-NPs 2.0 % / 72hrs) 10
Figure.33:	Electron micrograph of a part of the upper epidermis of a ID sub-group treated skin (ZnO-NPs 2.0 % / 72hrs) revealing the hyperkeratinization of stratum corneum layer
Figure.34:	Electron micrograph of the upper epidermis of a ID sub-group treated skin (ZnO-NPs 2.0%/72hr) revealing the thinning of stratum granular layer 11
Figure.35:	Electron micrograph of part of lower epidermis of a ID sub-group treated skin (ZnO-NPs 2.0%/72hr) revealing markedly keratinocytes disorganization and a stratum spinosum cell with signs of necrosis 11
Figure.36:	High magnification electron micrograph of a part of stratum spinosum cell of the epidermis of a ID subgroup treated skin (ZnO-NPs 2.0 % / 72hrs)
Figure.37:	Electron micrograph of a part of stratum basal cell of the epidermis of a ID sub-group treated skin (ZnO-NPs 2.0 % /72hrs)
Figure.38:	Electron micrograph of a part of hair follicle (HF) of a ID sub-group treated skin (ZnO-NPs 2.0 % / 72 hr)
Figure.39:	Photograph of a IIB sub-group rabbit after treatments with 0.5 % TiO ₂ -NPs for 24, 48 and 72 time periods showing normal skin appearance with no erythema, edema or scars formation