Role of MRI in Evaluation of Hepatic Steatosis

Essay

Submitted for partial fulfillment of Master degree in Radiodiagnosis

By

Azza Mohammed Mohammed Wahba

M.B.B.Ch. Faculty of Medicine Radiodiagnosis Department Ain Shams University

Supervised by

Prof. Dr. Amany Rashad Abdel -Aziz

Professor of Radio-diagnosis Faculty of Medicine – Ain Shams University

Dr. Salma Fathy Abd El Kader

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Radiodiagnosis Department
Faculty of Medicine
Ain Shams University
2015

Acknowledgement

First of all, my great thanks for **ALLAH**, the Most Merciful, the Most Gracious, for giving me courage, health and patience to undertake and accomplish this essay and for all his blesses on me in my life.

I would like to express my deepest thanks, gratitude and respect to my great **Prof. Dr. Amany Rashad Abdel-Aziz,** Professor of Radio-diagnosis, Faculty of Medicine – Ain Shams University, for her advices, creative ideas, her constant supervision and support throughout the performance of this work. I had the honor to complete this work under her supervision.

Words fail to express my profound thanks and sincere gratitude to **Dr. Salma Fathy Abd El Kader,** Lecturer of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her generous supervision, continuous encouragement, unlimited help and continuous guidance throughout this work.

Finally, I will never forget the sincere encouragement and great help of my **FAMILY** throughout my life journey.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Chapter (1): Gross Anatomy of the Liver	5
Chapter (2): Pathology of Hepatic Steatosis	27
Chapter (3): Physics and Technique	35
Chapter (4): MR Manifestation of Hepatic Steato	sis 49
Summary	69
References	72
Arabic Summary	

List of Abbreviations

Full term

ALD : Alcoholic liver disease

Ao : Aorta

Abbrev.

CA : Celiac artery

CSI : Chemical shift imaging

FIESTA : Fast imaging with steady state acquisition : Fast imaging with steady-state precession **FISP**

GDA : Gastroduodenal artery

GRE : Gradient-echo

HCC : Hepatocellular carcinoma

HL: Hepatic lipidosis HS : Hepatic steatosis

: Hepatic triglycride content HTGC

HV: Hepatic vein

IMV : Inferior mesenteric vein

IP : In -phase

IVC : Inferior vena cava LFC : Liver fat content

MRI : Magnetic resonance imaging

MRS : Magnetic resonance spectroscopy : Non-alcoholic fatty liver disease **NAFLD**

NASH : Nonalcoholic steatohepatitis

: Opposed phase OP : Parts per million **PPP**

: Point- resolved spectroscopy **PRESS**

List of Abbreviations (Cont.)

Abbrev. Full term PV : Portal vein **ROI** : Region of interest SI : Signal intensity **SMA** : Superior mesenteric artery : Superior mesenteric vein **SMV SNR** : Signal-to-noise ratio **STEAM** : Stimulated echo acquisition mode **SVS** : Single voxel spectroscopy \mathbf{T} : Tesla : The echo time TE TR : The repetition time

List of Tables

Table No.	Title	Page No.

List of Figures

Figure No.	Title Page	No.
Figure (1):	Superior (Diaphragmatic surface of the liver)	5
Figure (2):	Inferior (Visceral surface of the liver)	7
Figure (3):	Segmentation of the liver	9
Figure (4):	Segmental anatomy classifications of the liver: Couinaud Bismuth's	11
Figure (5):	Normal anatomy of the celiac Artery	13
Figure (6):	Normal anatomy of the portal-venous system.	14
Figure (7):	Hepatic blood supply	15
Figure (8):	Anatomy of the biliary system	18
Figure (9):	Axial image T1 and T2 weighted plain images showing segmental liver anatomy with the normal orientation of the left (L), middle (M) and right (R) hepatic veins	21
Figure (10):	Post-Gd T1w images with normal portal vein orientation and branching	22
Figure (11):	3D surface-shaded renderings based on the arterial phase of the gadolinium- enhanced imaging	22
Figure (12):	Sagittal MR images of the liver: 1- IVC. 2- Caudate lobe of the liver	23
Figure (13):	Coronal MR image of the liver	24
Figure (14):	T1-weighted non-contrast axial image	25

List of Figures (Cont.)

Figure No.	Title	Page No.
Figure (15):	MR Postcontrast. Segmental anato the liver	-
Figure (16):	MR post-contrast (true-FISP, FIE segmental anatomy of the liver	
Figure (17):	Respiratory bellow positioning sample feet first and supine patient positioning in a multichannel coil	t liver
Figure (18):	Underlying physics of in-phase opposed-phase imaging	
Figure (19):	Axial T2-weighted MR image show correct placement of the spectroscopy voxel	MR
Figure (20):	Normal appearance of the liver a imaging	
Figure (21):	T1-weighted gradient echo is recorded with OP (parts A and C) a (B and D) conditions	and IP
Figure (22):	Magnetic resonance imaging of the axial plane	
Figure (23):	Focal fatty sparing	55
Figure (24):	Focal fatty sparing. Opposed-pha and in-phase (b) images show we shaped focal fatty sparing in subcapsular region of segment VIII.	vedge- n the
Figure (25):	Diffuse steatosis hepatis with intensification	

List of Figures (Cont.)

Figure No.	Title	Page No.
Figure (26):	Focal fatty sparing. Opposed-pha and in-phase (b) images subcapsular focal fatty sparing, produces a hepatic pseudotumor	show which
Figure (27):	Geographic steatosis hepatis. Opp phase (a) and in-phase (b) images geographic steatosis hepatis. Note the course of the vessel is unaltered be steatosis	show nat the by the
Figure (28):	Mild hepatic steatosis in a 46-ye woman with abdominal pain and elevels of hepatic transaminases. (phase (TR msec/TE msec = 180 MR image shows a hepatic-to-signal intensity ratio	evated a) In- 0/4.42) plenic
Figure (29):	Axial MR images of the liver in in (29a) and out of phase (29b) sh loss of signal intensity of the parenchyma in out of phase (29b). This patient had >33% h steatosis	owing liver image epatic
Figure (30):	Transverse IP (A) and OP images the liver in a patient suspected of INASH. Significant dropout SI of the between the IP (A) and OP (B) in The fat-water ratio was 0.09, and the quantification of fatty liver infilt was 83%	naving e liver nages. ne MR tration

List	of	Tables
	~ -	

Figure (31):	A, T2-weighted MR of the liver, axial plane	. 64
Figure (32):	Images and corresponding spectra recorded from volunteers with differing HL contents	. 66
Figure (33):	Three subjects with different intrahepatic lipid contents are compared	. 67

Introduction

iver steatosis, defined as the accumulation of more than 5% fat in the liver, is the hallmark of most prevalent liver diseases, mainly alcoholic and nonalcoholic fatty liver disease (NAFLD). It is also highly prevalent in chronic hepatitis C virus (HCV) infection (*Webb et al.*, 2009).

Because of a variety of factors, including the use of both widely variable and subjective diagnostic criteria, the reported prevalence of hepatic steatosis has ranged from 3% to 39% in the literature (*Boyce et al.*, 2010).

The adverse prognostic implications of liver steatosis for living liver donors and for patients undergoing liver resection are increasingly being recognized, highlighting the need for a noninvasive method of detecting and quantifying liver fat in these patients (*Cassidy et al.*, 2009).

Percutaneous liver biopsy is the current standard means of diagnosing and grading steatosis, but it is an invasive procedure with potentially serious complications including hemorrhage, infection, bile leak, and a mortality of up to 0.3% (*Qayyum et al.*, 2009).

The lack of a safe, inexpensive and non-invasive method for accurate identification and quantitative grading of NAFLD has been a major barrier to understanding its epidemiology and pathophysiology. Therefore, there has been recent interest in the development of noninvasive MRI methods for the detection and quantification of fatty liver (*Reeder et al.*, 2009).

Early diagnosis and early treatment of NAFLD are important to prevent the development of endstage liver disease and cancer. In addition, liver fat is a risk factor for postoperative complications after liver resection and transplantation. MRI has become a primary modality to assess hepatic steatosis, both qualitatively and quantitatively MR imaging is a very sensitive and specific noninvasive modality for detection of hepatic steatosis. Chemical shift images are an efficient method for screening, diagnosis and semiquantification of liver steatosis (*Gangadhar et al.*, 2014).

Dual-echo, gradient-echo in-phase and opposed-phase MRI can predict the degree of hepatic steatosis when it is mild to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors (*Rinella et al.*, 2003).

More recently, proton magnetic resonance spectroscopy (1H MRS) has been shown to be a fast, safe, non-invasive method for the relative quantification of intrahepatocellular lipid (IHCL) content. This imaging modality should enable the true significance of IHCL accumulation in the pathogenesis of

conditions such as insulin resistance and type II diabetes to be understood (*Thomas et al.*, 2005).

These techniques permit the breakdown of the net MR signal into fat and water signal components, allowing the quantification of fat in liver tissue, and are increasingly being used in the diagnosis, treatment, and follow-up of fatty liver disease (*Cassidy et al.*, 2009).

In contrast to other modalities such as ultrasound and computed tomography (CT), MRI/MRS are capable of detecting even small amounts of intrahepatic lipid accumulation. Therefore, MRI/MRS are especially useful to measure changes in hepatic steatosis during various treatment regimens (*Springer et al.*, 2010).

Aim of the Work

The aim of this study is to shed some lights on the importance of magnetic resonance imaging in evaluation of hepatic steatosis and to explore the new MR strategies that provide an accurate, non invasive and more rapid means of assessing hepatic fat content, aiming to early diagnosis and treatment of fatty liver disease and hence preventing the potential development of cirrhosis and hepatocellular carcinoma (HCC).

П

Chapter (1) Gross Anatomy of the Liver

The liver, the largest organ in the body, is found in the right upper quadrant of the abdomen. It is relatively much larger in the fetus and child. The liver assumes the shape of the cavity it occupies. It has two surfaces, the diaphragmatic surface and the visceral surface.

The anatomy of the liver according to its external appearance identifies a superior or diaphragmatic surface and an inferior or ventral surface. On the superior aspect, the falciform ligament separates the liver into a larger right lobe and a smaller left lobe (Fig. 1). The inferior surface is more varied; the round ligament continues into with the umbilical portion of the left portal vein (Fig. 2) (*Majno et al.*, 2002).

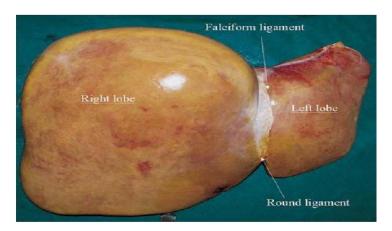


Figure (1): Superior (Diaphragmatic surface of the liver) Quoted from *Majno* et al. (2002).