

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Lu. abdon

SELECTIVE ADSORPTION OF IONS ON SOME SOIL EXCHANGERS

BY

MAGDY HASSAN KHIDER

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER of SCIENCE

in

Agriculture (Soil Science)

Soils Science Department Faculty of Agriculture Ain Shams University

1995

APPROVAR SHEET

SELECTIVE ADSORPTION OF IONS ON SOME SOIL EXCHANGERS

BY

MAGDY HASSAN KHIDER

(B.Sc. soil science, Fac. of Agric., Cairo Univ., 1979)

This thesis for M.Sc. degree has been approved by:

Prof.Dr.Fayez.M.Abdou

(Professor of Soil Science, Fac. of agric., Ain Shams University)

- IM Aledon

Hassan H. Abba

E.M. Khaled

Prof.Dr.Hassan.H.Abbas

(Professor of Soil Science, Fac. of Agric., Moshtohor, Zagazig University)

Dr.Eid.M.Khalid

(Ass.Professor of Soil Science,Fac.of Agric.,Ain Shams University)

Date of examination: 10/6/1995.

SELECTIVE ADSORPTION OF IONS ON SOME SOIL EXCHANGERS BY

MAGDY HASSAN KHIDER

[B.Sc. Soil Science, Fac. of Agric., Cairo Univ., 1979]

Under the Supervision of:

Prof. Dr. Fayez Mady Abdou professor of soil Science Fac. of Agric. Ain Shams Univ.

Prof. Dr. Abd El-Aziz Sheta
Professor of soil science
Fac. of Agric. Ain Shams Univ.

Dr. Al Montasser Bellah El Gundy Associate professor of soil science soils & water Res. Inst.

ABSTRACT

Four clay minerals, namely, kaolinite, illite, playgorskite and bentonite along with three soil clays separated from Shalakan, El-Hammol and Maryout areas were subjected to equilibrium with 0.01 N chloride solutions having different Ca/Mg ratios varied from 10-90 to 90-10. The studied selectivity parameters showed preferential Ca⁺⁺ adsorption relative to Mg for all the studied exchangers at the relatively lower Ca/Mg solution ratios. A clear Mg preference was recorded for all the exchangers at the relatively higher Ca/Mg

solution ratios except for kaolinit

The same exchangers were subjected also to equilibrium with 0.01N chloride solutions having different K-Ca and K-Mg ratios varied from 10/90 to 90/10. Results showed that adsorbed K/Ca and K/Mg ratios on the investigated exchangers increased by increase of K/Ca or K/Mg solution ratios. The total adsorbed K in K-Mg systems was relatively higher than the adsorbed k in k-ca systems. Gapon coefficient was reduced by increasing k/ca and k/Mg solution ratios. Data also showed that each exchanger had hearty a constant total CEC and specific CEC (CECs) and non-specific CEC (CEC ns).

The CEC_s and ks for K-Mg systems could be arranged as follow for separated soil clays Maryout> Shalakan > El-Hammol. For K-Ca systems the arrangement was Maryout > El-Hammol > Shalakan.

Key - words: soil exchangers, selective adsorption, Kaolinite, Illite,
Bentonite, Palygorskite, Ca/Mg, K/Ca, K/Mg ratios-chloride
forms, Gapon coefficient, CECs, CECns, Ks.

ACKNOWLEDGMENT

The author wishes to express his great appreciation and gratitude to Prof. Dr. Fayez Mady Abdou, Prof. Dr. Samir Foda, Prof. Dr. Abd El Aziz Sheta, professors of soil science, Fac, of Agric., Ain Shams Univ. and Dr. Al Montasser Bellah El Gundy associate professor, Soils and Water Research Institute, for supervision, suggestions, guidance and sincere help throughout the entire work and preparation of the manuscript.

Thanks are also to Dr. Hosny Hussein Hassona, Soils & Water Research Institute whose help was deeply appreciated.

Thanks to the staff members of Soilsand Water Research Institute for their help and cooperation.

CONTENTS

	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	2
2.1. Cation exchange capacity	2
2.2. Ion exchange	2
2.2.1. origin of the surface charge	3
2.2.2. Position of exchangeable cations	4
2.2.3. The properties of cation exchange reaction 9	6
2.3. Cation exchange selectivity	8
2.3.1. Selective adsorption of Ca-Mg on clay minerals	9
2.3.2. Selective adsorption of Ca-Mg on soil clays	10
2.3.3. Selective adsorption of K-Ca on clay minerals	13
2.3.4. Selective adsorption of K-Ca on soil clays	14
3 - MATERIALS AND METHODS	18
3.1. Soil samples	18
3.2. Methods of analysis	18
3.3. Mineralogical analysis	19
3.3.1. Clay separation for X-ray analysis	19
3.4. Studies on cation exchange selectivity	20
4-RESULTS AND DISCUSSION	24
4.1. Physical and chemical charateristics of the studied soil samples	24

4.2. Mineralogical analysis of the clay fraction	27
4.2.1 Mineralogical composition of the clay fraction separated from the studied soils	29
4.2.2. Mineralogical composition of the standard clay minerals	34
4.3. Cation exchange selectivity	39
4.3.1. Ca-Mg exchange on the standard cally minerals	39
4.3.2. Ca-Mg exchange on separated soil clays	45
4.3.3. K-Ca exchange on the standard cally minerals	50
4.3.4. K-Ca exchange; on separated soil clays	54
4.3.5. K-Mg exchange on the standard cally minerals	58
4.3.6. K-Mg exchange on separated soil clay s	61
4.4. Some selective parameters in soil clay subjected to K-Ca exchange equilibria	6:4
4.4.1. Cation exchange capacity	6.4
4.4.2. K-exchangeability and selectivity	6 4
4.4.3. Ca-exchangeability and selectivity	67
4.5. Some sele∉tive parameters in soil clay subjected to K-Mg exchange equilibria	68
5- SUMMARY AND CONCLUSIONS	72
6- REFERENCES	77
AD ADIC CIBANADY	

List of Tables

No	· ·	Page
1	Some chemical properties of the experimental soils	25
2	Particle size distribution, organic matter, calcium carbonate and gypsum content in the experimental soils	26
3	Semi quantitative mineralogical composition of the clay fraction [<2µ] separated from the experimental soils and the standard minerals	31
4	Adsorbed Ca, Mg, Ca equivalent fraction and the selectivity coefficient (K _s) for the standard clay minerals	40
5	Adsorbed Ca, Mg, Ca equivalent fraction and the selectivity coefficient (K ₈) for the clay fraction separated from the experimental soils	46
6	Adsorbed K, Ca and K/Ca ratios for the studied standard clay minerals	51
7	Gapon coefficients for the studied standard clay minerals	52
8	Adsorbed K, Ca and K/Ca ratios for the soil clays separated from the experimental soils	55
9	Gapon coefficients for the studied soil clays separated from the experimental soils	: 56

10	Adsorbed K, Mg and K/Mg ratios for the studied standard clay minerals	59
11	Gapon coefficients for the studied standard clay minerals	: 60
12	Adsorbed K, Mg and K/Mg ratios for the soil clays separated from the experimental soils	1 62 ;
13	Gapon coefficients for the studied soil clays separated from the experimental soils	63
14	Some selective parameters for K and Ca in soil clays separated from the experimental soils	6.5
15	Some selective parameters for K and Mg in soil clays separated from the experimental soils	69

1

· · ·

List of Figures

No		Page
1	X-ray diffraction patterns of the clay fraction separated from surface layer of Shalakan soil	30
2	X-ray diffraction patterns of the clay fraction separated from surface layer of EL-Hammol soil	32
3	X-ray diffraction patterns of the clay fraction separated from surface layer of Maryout soil	33
4	X-ray diffraction patterns of Mg-saturated air dried treatment of standard Illite	35
5	X-ray diffraction patterns of Mg-saturated air dried and heated at 550 °C treatments of standard Kaolinite	36
6	X-ray diffraction patterns of Mg-saturated air dried treatment of standard Bentonite	37
7	X-ray diffraction patterns of Mg-saturated air dried treatment of standard Palygorskite	38
8	Relationship between Ca equivalent fraction in solution and solid phase for the studied clay minerals	. 42
9	Relationship between Ca equivalent fraction in solution and solid phase for the studied soil clays	. 47