

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

ADVANCED STUDIES ON BARLEY STRIPE MOSAIC VIRUS (BSMV)

BY

SALWA NASR ZEIN ABD-EL HAMID

B.Sc. (Agric. Sci.), Fac. of Agric., Cairo Univ., 1988. M.Sc. (Plant Pathology), Fac. of Agric., Cairo Univ., 1995.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

In
PLANT PATHOLOGY

Plant Pathology Department
Faculty of Agriculture
Cairo University

BZYN9

Name of candidate

Salwa Nasr Zein Abd-El-Hamid

Tile of thesis

Advanced studies on barley stripe mosaic virus (BSMV).

Supervisors

Prof.Dr. E.A.Salama

Prof.Dr. Om-Hashem M.El-Banna Chief Researchers Dr. M.A.S. El-Kady

Department

Plant pathology

Approval.....

Degree: Ph.D

In the present study, Barley stripe mosaic virus (BSMV) was from naturally infected barley plants, collected from the Agriculture Research Experimental Station Center, Giza. The virus infected nine plant species belonging to three different families.

It was inactivated by ten minutes exposure to 65°C, withstood dilution up to 10⁻³ but not 10⁻⁴ and infectivity was retained for 21 days.

The virus was detected using serological methods (DAS-ELISA) and transmitted mechanically and through barley grains at percentage ranging from 4 to 23%.

The electron microscopy revealed ultra-structural changes. The morphology of plastids was altered during infection, the grana become disorganized. Plastids developed vesicles. The cytoplasm contained inclusion bodies with disordered masses of virus. The palisade cells were deformed and seemed shorter than normal when semithin sections were examined using light microscope.

Using three different purification procedures, BSMV yield was 3.7, 7.0 and 2.3 mg/100g of barley leaves, respectively. Electron micrograph of purified BSMV showed rod-shaped particles.

The polyclonal antibodies raised against BSMV had a virus-specific titer of 1:2000. The concentration of IgG conjugate with alkaline phosphatase was 1/1000.

The prepared antiserum was used for detection of BSMV by tissue-blotting immunobinding assay (TBIA) and Dot blotting immunobinding assay (DBIA) on nitrocellulose membrane (NCM) and was also used to detect BSMV within different parts in mature seed and non—seed parts. The embryos and lodicules were infected with BSMV in all cultivars.

Nucleic acid sequence comparison between the two strains (G119 and ND18) of BSMV revealed that: the sequence of the intertgenic region of the β RNAs was highly conserved, but the sequenced portion of the β b gene showed diversity between the two strains. Five bases were found to be different, 18 out of 116 amino acids of the β b protein were different, three amino acids insertion, and one amino acid deletion. The 5 untranslated regions, of RNA γ a of the two strains were nearly identical. Only six nucleotides were changed, 12 out of 162 amino acid of γ a protein were differed and one amino acid deletion. The coat protein of G119 strain was 23 (KD) as tested by western blotting.

Virus infection significantly reduced the number of grain/spike of cvs G117 and G119. The mean number of grain/spike was reduced from 55.26 to 42.93 in G117 and the main number of grain/spike was reduced from 57.06 to 43.33 in G119. Also BSMV infection significantly reduced the grain weight/spike of cvs G117 and G-119 compared with healthy plants that it was reduced from 3.33 to 2.11 in G117 and from 2.73 to 2.00 in G119. On the other hand no significant differences were observed between diseased and healthy plants.

The effect of thermotherapy on barley grains (cv. G119) on elimination of BSMV was tested. Exposure of the grains to 60°C for 60 min resulted in the reduction in percentage of both germination and virus transmission through barley grains. The effect of chemotherapy on BSMV elimination was testes. All chemical compounds tested gave promising results in virus elimination. Kinetin was the most effective component (90% reduction), whereas ribavirin and 8-azoguanine had the lower effect. Thiouracil reduced infection by 80%. Benzoic acid was effective at lower than in higher concentration.

Key words:-barley stripe mosaic virus, hordeivirus, seed transmission, serology, western blotting, molecular biology, and virus elimination

E.a. Salama

Om-Hashem El-Banna

APPROVAL SHEET

Name: SALWA NASR ZEIN ABD EI-HAMID

Title: Advanced STUDIES ON BARLEY STRIPE MOSAIC VIRUS (BSMV).

This Thesis for Ph.D. in Agricultural Sciences (Plant Pathology) has been approved by:

Prof.Dr. G. I. Fegla

Prof. Dr. IA. Chanhin

Prof.Dr.

Prof. Dr. Hashem El-Banny

Committee in charge

Date: / /2002

Supervision committee

1- Prof. Dr. El-Sayed Ahmed Salama.

Professor of Plant Pathology, Faculty of Agriculture, Cario University.

2- Prof. Dr. Om- Hashem Mohmed El-Banna.

Professor of Plant Pathology, Faculty of Agriculture, Cario University.

3- Prof.Dr. Moustafa Ahmed Salama El-Kady.

The former director of Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agriculture Research Center, Giza.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to the GOD for his magnificent help to make this work is available.

I would like to express my thanks and special respect to **Prof. Dr. El-Sayed A.Salama,** Professor of Plant Pathology, Faculty of Agriculture, Cairo University for whom I owe special appreciation and thanks for his continuous encouragement, kind help, constructive effort, valuable suggestion during this studies.

My sincere gratitude and deep appreciation are extended to Prof. Dr. Om-Hashem M. El-Banna, Professor of Plant Pathology, Faculty of Agriculture, Cairo University, for her superb advices, valuable orientation, great help throughout this work.

Special thanks are due to **Prof. Dr. M.A.S. El-Kady**, the former director of Virus and Phytoplasma Research Dept, Plant Pathology Research Institute, Agriculture Research Center, for his fruitful, guidance and general help during the course of this investigation.

Thanks are also extended to **Dr. A.O.** Jackson and **Dr. Lowrence-Diane**Professors of Plant & Microbial Biology, University of California, Berkeley, USA for facilities offered, invaluable help and suggestion for the part of the molecular biology studies carried out through this work.

Finally, I wish to thank my parents for their support, love, sacrifice, their care and encouragement at all times.

CONTENTS

	Page
TITLE SHEET	i
APPROVAL SHEET	ii
SUPERVISION COMMITTEE	iii
ACKOWLEDGMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLE	viii
LIST OF FIGURES	ix
INTRODUCTION	1
REVIEW OF LITERATURE	3
Part 1- Virus identification	3
1-1- Host range and diagnostic hosts reactions	3
1-2- Stability of the virus isolate in crude	4
1-3-Modes of transmission	5 7
1-4- Serological detection of the virus	
1-4-1- Enzyme-linked Immunosorbent assay	7
1-4-2- Tissue-blotting Immunoassay (TBIA) and Dot-blotting	8
Imunobinding assay (DBIA) on nitrocellulose membranes	
1-4-3- Western blotting	. 10
1-5- Cytological studies	13
1-5-1- Electron microscopy	13
1-5-2- Light microscopy	15
Part II- Virus purification and antiserum producation	15
2-1- Purification of the virus isolate	15
2-2- Morphology of virus particles	18
2-3- Antiserum producation	18
Part III- Molecular characterization	20
3-1- Extraction of nucleic acid	23
3-2- Reverse transcription RT-PCR	25
3-3- Cloning and sequencing	27
Part IV- Yield losses and virus elimination	31
4-1- Yield losses	31
4-2- Virus elimination	32
4-2-1- Thermotherapy	33
4-2-2- Chemotheropy	34
4-2-2-1- Ribavirin	34
4-2-2- Kinetin and thiouracil	37
4-2-2-3- Benzoic acid	39
MATERIALS AND METHOD	41
Part I- Isolation and identification of the causal agents	41
1-1- Isolation and biological purification	41
1-2- Identification of the virus isolate	42
1-2-1- Host range and diagnostic host reaction	42
1-2-2- Stability of the virus isolate in crude sap	42
1-2-3- Seed transmission through different barley cultivars	42
1-2-4- Serological detection of the virus isolate (DAS-ELISA)	43
1-2-5- Cytological studies	43
1-2-5-1- Electron microscopy 1-2-5-2- Light microscope examination	44 44
r=z=j=z= raym imciumana cazmidizhou	**

Part II- Virus purification and ELISA kit	45
2-1- Purification of the virus isolate	45
2-1- UV-absorption sepectrum of the purified virus	47
2-1-2- Electron microscopy	47
2-2- Production of antiserum specific to BSMV	48
2-2-1- Blood collection and separation of serum	48
2-2-2- Determination of the specificity of the antiserum produced	49
2-3- Purification immunoglbulin (IgG) from BSMV specific antiserum	50
2-4- Preparation of antibody-enzyme conjugate using alkaline phosphatase	50
2-5- Serological detection	51
2-5-1- Tissue-blotting Immunoassay (TBIA) and Dot-blotting	51
Immunobinding assay (DBIA) on nitrocellulose membranes	• •
2-5-2- Presence of the virus isolate in non-seed parts	52
2-5-3- Presence of the virus isolate in mature seed parts	52
Part III- Molecular characterization	52
3-1- Nucleic acid analysis	52
3-1-1- Nucleic acid extraction	52
3-1-2- Reverse transcription	53
3-1-2- Reverse transcription 3-1-3- Polymerase chain reaction	53
3-1-5- Forymorase chain reaction	54
3-1-4-1- Ligation	54
3-1-4-2- Bacterial transformation	56
3-1-4-3- Isolation of recombinant plasmid DNA preparation	56
3-1-4-4- Restriction analysis of minipreparation of plasmid DNA	57
(digestion)	
3-1-4-5- DNA sequencing	57
3-2- Protein analysis	58
3-2-1- Western blotting	58
Part IV- Yield losses and virus elimination	58
4-1- Yield losses	58
4-2- Virus elimination	59
4-2-1- Thermotherapy	59
4-2-2- Chemotherapy	59
RESULTS	67
Part I- Isolation and identification of the causal agents	67
1-1- Isolation and biological purification	67
1-2- Identification	67
1-2-1- Host range and diagnostic host reaction	67
1-2-2- Stability of the virus isolate in crude sap	71
1-2-3- Seed transmission through different barley cultivars	71
1-2-4- Serological detection of the virus isolate (DAS-ELISA)	71
1-2-5- Cytological studies	72
1-2-5-1- Electron microscopy	72
1-2-5-2- Light microscope examination	72
Part II- Virus purification and ELISA kit	83
2-1- Purification of the virus isolate	83
2-1-1- UV-absorption sepectrum of the purified virus	83
2-1-2- Electron microscopy	85
2-2- Production of antiserum specific to BSMV	85
2-2- I reduction of antiscrain specific to Down V	86

LIST OF FIGURERS

Fig.1:	The Barley stripe mosaic virus genome	Page:
Fig.2:	Cloning strategy of BSMV (βb, UTR) and (γa,UTR)using TOPO-TA (Intvitrogen)	55
Fig.3:	(A) Systemic stripe mosaic symptoms on barley plants naturally-infected with BSMV.(B) Yellowing and systemic necrosis developed on inoculated barley plants cv.G119	69
Fig.4:	Chlorotic local lesions developed on Beta vulgaris L. cv Baladi inoculated with BSMV	70
Fig.5:	Inoculated leaf of Chenopodium amaranticolor, showing chlorotic local lesions	70
Fig.6:	Electron micrograph of thin section of BSMV-infected leaf cells showing disordered plastide with peripheral vesicles and disorganized grana lamella (X10000)	73
Fig.7:	Paranchyma cell with disorganized plastids containing oamphllic bodies (X10000)	74
Fig.8:	Plastides of infected barley leaf. Notice the membrane invagination (X8000)	75
Fig.9:	Plaside of healthy barley leaf (X 36000)	76
Fig.10:	Electron micrograph of immature embryo of barley grain showing abnormal nucleus	77
Fig.11:	The nucleus and cytoplasm of barley embryo appeared normal in healthy seed (X 10000)	78
Fig.12:	Ultra thin section of infected embryo in which tubular particles and crystalline inclusion (X 28000) are obvious	7 9
Fig.13:	Dense fibrous inclusion appeared in infected embryo (X 46000)	80
Fig.14:	The crystalline aggregates formed in irregularly oriented layers in the nucleus of embryo barley grain (X 46000)	81
Fig.15:	Palisade cells of infected barley leaf as shown by light microscopy. (X400).	82

Fig.16;	Ultraviolet absorption spectra of purified BSMV, using three different procedures of purification	84
Fig.17:	Electron micrograph of purified BSMV stained with 2% uranyl acetate, pH 6.8. Magnification. (46000)	87
Fig.18:	Detection of BSMV in both diseased (D) and healthy G 119 barley plants by DBIA (A) and TBIA (B) pink colour indicated positive reaction	89
Fig.19:	PCR amplification of portion of β and γ cDNAs from the BSMV ND18 and G119 strains	92
Fig.20:	An alignment of the nucleotide sequence of the ND18 and G119 strains in a region of RNAβ, that includes the untranslated region between the coat protein and βb gene and the 5'terminus of the βb gene	93
Fig.21:	An alignment of the nucleotide sequence of ND18 and G119 strains in a region of RNA γ , that includes the 5' untranslated region and the 5' terminus of the γ a gene	94
Fig.22:	An alignment of the nucleotide sequence of the untranslated region between the coat protein and βb gene in RNA β of the ND18 and G119 strains	95
Fig.23:	An alignment of the amino acid sequence of the amino-terminus of the \beta b proteins of the ND18 and G119 strains	95
Fig.24:	An alignment of the nucleotide sequence of the 5' untranslated region in RNAy of the ND18 and G119 strains	96
Fig.25:	An alignment of the amino acid sequence of the amino-terminus of the γa proteins of the ND18 and G119 strains	96
Fig.26:	Analyses of G119 infected seed. Samples were analysed by SDS-PAGE followed by western blotting	98

#