

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Design of Low Power / Low Sensitivity to Process Variations Integrated RF Receivers in Deep Sub-micron CMOS Technology

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Sameh Ahmed Assem Mostafa Ibrahim

B.Sc. of Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2001

Supervised By

Prof. Hani Fikry Ragai Dr. Mohamed Sameh Tawfik

Cairo, 2005

Examiners' Committee

Sameh Ahmed Assem Mostafa Ibrahim

Name:

Date: 18/6/2005

Thesis: Degree:	Design of Low Power / Low Sensitivity Variations Integrated RF Receivers in Deep CMOS Technology Master of Science in Electrical Engineering	,
Title, Name	e and Affiliation	Signature
Ain Shams Faculty of E		
American U	nfa Yehia Ghannam Iniversity in Cairo, d Engineering School, ot.	
Ain Shams Faculty of E		
Dr. Moham IPD Manage Mentor Grap Cairo, Egyp	phics Corp.,	

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communications Engineering).

The work included in this thesis was carried out by the

author at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Sameh Ahmed Assem Mostafa Ibrahim

Signature:

Date:

Curriculum Vitae

Name of Researcher Sameh Ahmed Mostafa Ibrahim

Date of Birth 28/10/1978

Place of Birth Cairo, Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2001

ABSTRACT

Sameh Ahmed Assem Mostafa Ibrahim, Design of Low Power / Low Sensitivity to Process Variations Integrated RF Receivers in Deep Submicron CMOS Technology, Master of Science dissertation, Ain Shams University, 2005.

This dissertation demonstrates the design of a fully integrated 2.4 GHz CMOS receiver in accordance with the Bluetooth standard. The receiver integrates a low noise amplifier, a passive polyphase quadrature generator, four Gilbert cell mixers, an active polyphase intermediate frequency filter and a zero-crossing demodulator.

The dissertation also includes detailed system engineering of the proposed receiver. Three main constraints were regarded through the whole work; full integration in CMOS, low sensitivity to process variations and low power. These constraints have been considered in three aspects; system level, circuit level and layout (mask) level.

AMS 0.35 µm CMOS technology was used. Simulation results show that the front-end has a 23 dB voltage conversion gain, an 11 dB noise figure and a -9 dBm IIP3. It consume 6.79 mA from a 3.3 V supply. A minimum image rejection ratio of 37 dB was achieved.

Key words: low-if receiver, Bluetooth, polyphase, image rejection ratio, CMOS, zero-crossing detector, low noise amplifier, double quadrature.

ACKNOWLEDGEMENT

الحمد لله رب العالمين

I would like to thank my supervisors Prof. Dr. Hani F. Ragai and Dr. Mohamed S. Tawfik for their continuous guidance, encouragement and help. They helped me throughout my entire design flow. I learned so many valuable things from them, but above all, they taught me how to be devoted to research and how to help others. I would like also to thank them for their patience.

I would like to thank Prof. Dr. Khaled W. Sharaf for his support and encouragement. He helped me solve many of the problems I faced during my work. He welcomed my persisting questions with great patience and never let me down.

Many Thanks go to my colleagues and friends for their support and help during my thesis. And special thanks for Mohammed Abd-El-Sattar, Amr Misbah and Amr Amin.

Last but not least, I would like to thank my parents. Their patience, care, and love are what made me. I pray to God that I will always be a good faithful son to them. I wish also to thank my wife in being patient with me in the critical time I passed through.

CONTENTS

LIST OF F	IGURES	V
LIST OF T	ABLES	IX
LIST OF A	BBREVIATIONS	XI
LIST OF S	YMBOLS	XIII
CHAPTER	1: MONOLITHIC RF CMOS RECEIVERS	3
1.1 1	RF FUNDAMENTALS	3
1.1.1	Noise	4
1.1.2	Sensitivity	10
1.1.3	Linearity	10
1.1.4	Image and Image Rejection Ratio	14
1.2	RECEIVER ARCHITECTURES	15
1.2.1	Super-Heterodyne Receiver	15
1.2.2	Zero-IF Receiver	16
1.2.3	Low-IF Receiver	18
1.2.4	Image Rejection Techniques for Low/Zero-IF Receivers	19
1.3	SENSITIVITY TO PROCESS VARIATIONS	27
1.3.1	Causes of Process Variations	27
1.3.2	Decreasing Sensitivity to Process Variations	28
1.4	LOW POWER CONSUMPTION	29
1.4.1	Architectural Considerations	29
1.4.2	Circuit Considerations	30
CHAPTER	2: RF SYSTEM ENGINEERING FOR A BLUETOOTH	
RECEIVER		31
2.1	BLUETOOTH STANDARD	32
2.1.1	Frequency Band and RF Channels	32
2.1.2	Modulation	32
	1	

2.1	3 Sensitivity and Bit Error Rate (BER)	33
2.1.4	Interference Performance	33
2.1.	5 Intermodulation	34
2.1.0	Maximum Usable Level and RSSI	35
2.2	BLUETOOTH RECEIVER SPECIFICATIONS	35
2.2.	Minimum SNR	35
2.2.2	Noise Figure	36
2.2.	3 IIP3	37
2.2.4	4 IIP2	38
2.2.	5 Phase Noise	38
2.2.0	Spectral Mask	40
2.2.	7 Image Rejection	41
2.2.8	8 Required Gain	41
2.2.9	Published CMOS Bluetooth Receivers	43
2.3	PROPOSED ARCHITECTURE CONSIDERATIONS	44
2.3.	l Topology Selection	44
2.3.2	? Frequency Planning	45
2.3.	Single or Dual Conversion	46
2.3.4	4 Single Ended or Differential	46
2.3.3	5 AGC + ADC or Limiter + Demodulator	47
2.3.0	SQDC or DQDC	48
2.4	BUILDING BLOCKS SPECIFICATIONS	48
2.4.	Noise Figure of Cascaded Stages	48
2.4.2	2 IIP3 and IIP2 of Cascaded Stages	50
2.4	Single Path Equivalent Model	51
2.4.	4 Excel Spreadsheets	53
СНАРТЕ	R 3: CIRCUIT DESIGN FOR A BLUETOOTH RECEIVER	55
3.1	LNA	55
3.2	PP QUADRATURE GENERATOR	66
3 3	DODC MIXING STAGE	72

3.4	THE RECEIVER FRONT-END	79
3.5	IF FILTER	81
3.6	DEMODULATOR	88
3.7	THE OVERALL RECEIVER	94
CONCI	USIONS & FUTURE WORK	97
APPEN	DIX A: IMAGE REJECTION IN A DQDC LOW-IF RECEIVER	99
APPEN	DIX B: EXCEL SPREADSHEETS	107
REFER	ENCES	113