

Density versus Gravity Observations

A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M. Sc. Degree In Civil Engineering

Prepared by MOHAMED EL-SAYED AHMED SHEBL

B.Sc. in Civil Engineering, June 2006 Faculty of Engineering, Ain Shams University

Supervisors

Prof. Dr. Mohamed El-Husseiny El-Tokhey,

Professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Mohamed Mamdouh El-Habiby

Associate professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Ahmed Emad Ragheb,

Assistant professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Density versus Gravity Observations

A Thesis For

The M. Sc. Degree In Civil Engineering (SURVEYING)

by

MOHAMED EL-SAYED AHMED SHEBL

B.Sc. in Civil Engineering, June 2006 Faculty of Engineering, Ain Shams University

THESIS APPROVAL EXAMINERS COMMITTEE Prof. Dr. Mohamed El-Husseiny El-Tokhey Professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University Prof. Dr. Abdullah Ahmed Saad Professor of Surveying and Geodesy Faculty of Engineering in Shubra, Banha University Prof. Dr. Ibrahiem Fathey Shaker Professor of Photogrammetric Surveying Faculty of Engineering, Ain Shams University

Date:/ 2014

DEDICATION

This thesis is dedicated to *MY PARENTS* who have given me this opportunity of education and supported me throughout my life, and their prayer for my success.

Also

It is dedicated to *MY BROTHERS*, *SISTER*, *AND WIFE* who have encouraged and helped me to complete this work.

Also

Special dedication for **MY DAUGHTER** God gave me from months

Statement

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M. Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from 2009 to 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date: / /2014

Signature:

Name: Mohamed El-Sayed Ahmed

Shebl

Abstract

Gravity meters measure all effects that make up the Earth's gravity field and many of these effects are caused by known sources, such as the Earth's rotation, distance from the Earth's center, topographic relief, and tidal variation. Gravity caused by these sources can be calculated using realistic Earth models and removed from the measured data, leaving gravity anomalies caused by unknown sources, that reflects the effect of the irregular underground distribution of rocks having different densities.

Microgravity investigations are widely applied at present for solving various environmental, geological problems, and archaeology because it is a very useful method especially it's a non-destructive technique, At the same time, development of modern generation of field gravimetric equipment (*Gravimeter*) allows to register promptly and digitally microGal (10^{-8} m/s^2) anomalies that offer a new challenge in this direction.

The Micro-Gravity method can be a relatively easy geophysical technique to interpretation. It requires only simple but precise data processing. It can be used in detection of subsurface cavities, such as crypts, cellars and tunnels.

Although a large amount of antiques in Egypt which estimated over one-third the antiques of the world, the use of micro-gravimetry in archaeology is still a novel concept, which has not been completely explored over the past years.

The Great Pyramid, one of the Seven Wonders, it is until now messier controversial especially in its construction theory prediction and internal components like passages and rooms. And there is an important question is "Are there other rooms inside the Great Pyramid not discovered yet?"

Comparison between real gravity observations by gravimeter on pyramid and theoretical gravity modeling for it, may be answering the previous question.

Key words

Gravity anomaly, Density, Gravity interpretation and forward modeling.

Acknowledgement

Though only my name appears on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever.

First and foremost, I want to thank God for all the things He has blessed and is still blessing me with, without which I would not be able to pursue knowledge, or even life.

My deepest gratitude is to my advisor, Prof. Dr. Mohamed El-Tokhey. I have been amazingly fortunate to have an advisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. Dr. Tokhey taught me how to question thoughts and express ideas. His patience and support helped me overcome many crisis situations and finish this dissertation. I hope that one day I would become as good an advisor to my students as Dr. Tokhey has been to me.

My co-advisor, Dr. Mohamed El-Habiby, has been always there to listen and give advice. I am deeply grateful to him for the long discussions that helped me sort out the technical details of my work. I am also thankful to him for encouraging the use of correct grammar and consistent notation in my writings and for carefully reading and commenting on countless revisions of this manuscript.

I also wish to thank the third member of my supervisory committee, Dr. Ahmed Ragheb, for his advice and comments on the thesis.

I also thank all members of pyramid mission team work for their cooperation with us and special thanks to Dr. Mathias Wiegelt from Stuttgart University. And also great thanks to all partners of mission represented in Ain Shams University, Calgary University, Stuttgart University, Bibliotheca Alexandrina, and the Supreme Council of Antiquities.

Many Thanks go to Prof. Dr. Adel Hagag, Prof. Dr. Ibrahiem Shaker, Dr. Ayman Ragab, Dr. Tamer Fathey, Dr. Yasser Megahed and Dr. Akram Soltan for their support to complete my studies.

I am greatly indebted to all staff members and colleagues of the surveying department in the Faculty of Engineering, Ain Shams University, for their friendship, education, and continuous help and support. Special thanks should be introduced to Eng. Mohamed Ramadan who helped me a lot in field and office to finish my work and Eng. Mohamed Osama, for his kindly encouragement to complete my research.

I also dedicate this thesis to my dearest friend yehya kandil for his help and encouragement.

Last but not least, I would like to dedicate this thesis to MY FAMILY.

Table of contents

Statement	i
Abstract	iii
Acknowledgement	v
Table of contents	vii
List of figures	xii
List of tables	xvi
List of abbreviations	xvii
List of symbols	xviii
Chapter One : Introduction	1
1.1 Geophysical methods	1
1.2 Geophysics method choosing	2
1.3 Gravity method	4
1.4 Problem definition	4
1.5 Thesis objectives	6
1.6 Methodology	6
1.7 Thesis outline	7
Chapter Two: Gravity Background	9
2.1 Gravity	9
2.1.1 Theory	9
2.1.2 Gravity units	12

2.2 Gravity surveying
2.3 Gravity instruments
2.3.1 Pendulum gravimeter: 14
2.3.2 The free-fall gravimeter:
2.3.3 The spring gravimeter:
2.4 Gravity network
2.4.1 Absolute Gravimetry
2.4.2 Relative Gravimetry
2.5 Gravity observation techniques
2.6 Direct vs. inverse modeling
2.7 The use of gravimetry in void detection
2.7.1 The use of microgravity for the detection of abandoned Coa workings
2.7.2 Observed and calculated gravity anomalies above a tunne driven in clays
2.7.3 The use of microgravity technique in archaeology
Chapter Three: Terrestrial Gravity Data post Processing 31
3.1 Temporal Reductions
3.1.1 Tide correction
3.1.2 Drift correction
3.2 Spatial Reductions
3.2.1 Latitude correction

3.2.2 Elevation correction	36
3.2.2.1 Free air correction	36
3.2.2.2 Bouguer correction	37
3.2.2.3 Combined elevation correction	39
3.2.2.4 Terrain Correction	39
3.2.3 Isostatic correction	41
3.3 Data Filtering	41
3.3.1 Separation of regional and residual anomalies	42
3.3.2 Upward-downward continuation	43
3.3.3 Derivative-based filters	44
Chapter Four : Gravity and density relationship (forward inverse modeling)	
Chapter Four : Gravity and density relationship (forward	45
Chapter Four : Gravity and density relationship (forward inverse modeling)	45
Chapter Four : Gravity and density relationship (forward inverse modeling)	45 45 46
Chapter Four : Gravity and density relationship (forward inverse modeling)	45 46 47
Chapter Four: Gravity and density relationship (forward inverse modeling)	45 46 47
Chapter Four: Gravity and density relationship (forward inverse modeling) 4.1 Introduction 4.2 Forward Gravity modeling of simple-shaped bodies 4.2.1 The sphere 4.2.2 The horizontal cylinder.	45 46 47 49
Chapter Four: Gravity and density relationship (forward inverse modeling) 4.1 Introduction 4.2 Forward Gravity modeling of simple-shaped bodies 4.2.1 The sphere 4.2.2 The horizontal cylinder	45 46 47 49 53
Chapter Four: Gravity and density relationship (forward inverse modeling) 4.1 Introduction 4.2 Forward Gravity modeling of simple-shaped bodies 4.2.1 The sphere 4.2.2 The horizontal cylinder 4.2.3 The Right Rectangular prism 4.2.4 The Dipping Thin Sheet with finite length	45 46 47 49 53 56

4.3.1.1 The limiting depth calculation method	62
4.3.1.2 The total anomalous mass method	66
4.3.1.3 Approximate thickness	67
4.3.1.4 Inflection point	67
4.3.2 Indirect interpretation	70
Chapter Five : The use of Gravimetry in archeology-Great p	-
5.1 Introduction	71
5.2 Historical review of great pyramid exploration	72
5.2.1 The Search for Hidden Chambers	72
5.2.2 Exploring the Air Shafts in the Queen's Chamber	74
5.3 Site description	80
5.4 Used instruments	86
5.4.1 CG-5 Scintrex Autograv System (Gravimeter)	86
5.4.1.1 External influences in gravity measurements	89
5.4.1.2 Internal influences in gravity measurements	91
5.4.2 RTK GPS	93
5.5 Field procedures	96
5.6 Data post processing	106
5.6.1 Data dumping	106
5.6.2 Data reductions	107

5.6.2.1 Free air correction (FAC)	108
5.6.2.2 Bouguer correction (BC)	109
5.6.3 Gravity Data filtering	110
5.7 Gravity Data analysis	112
Chapter Six: Summary, Conclusions and Recommendations	119
6.1 Summary	119
6.2 Conclusions	120
6.3 Recommendations for future research	121
References	123

List of figures

Figure 2-1: Newton's Universal law of gravitation
Figure 2-2: Newton's second law of motion
Figure 2-3: Localized effect due to a sub-surface excess mass
Figure 2-4: free fall gravimeter concept
Figure 2-5: The FG5 Absolute Gravimeter
Figure 2-6: spring gravimeter concept
Figure 2-7: The LaCoste and Romberg Gravimeter
Figure 2-8: Gravity observation procedures (a: profile method, b: step method and c: star method)
Figure 2-9: Microgravity map and drilling results showing an area of abandoned coal workings in Bristol, UK
Figure 2-10: the observed and calculated gravity anomalies models above the tunnel
Figure 2-11: The residual Bouguer anomaly map of the survey area 28
Figure 2-12: The possible location and shape of the crypt
Figure 3-1: Gravity readings for base station at start and end loop 33
Figure 3-2: Theoretical gravity value and latitude relationship 35
Figure 3-3: Height of observed point above datum
Figure 3-4: Height of Bouguer plate
Figure 3-5: Topography around a gravity station