

Study of p27^{Kip1} as an Emerging Prognostic Marker for Breast Duct Carcinomas

Thesis
Submitted In Fulfillment of Master Degree in Pathology

BY Eman Naguib Al-Helaly Khorshed Abd El-Aziz M.B.B.Ch

Supervisors

Prof. Dr. Yehia Mohamed Fayed

Professor of pathologyFaculty of Medicine - Cairo University


Dr. Samar Abdel-Monem El-Sheikh

Lecturer of pathologyFaculty of Medicine - Cairo University

Dr. Iman Loay Hussein

Lecturer of oncologic pathology
National Cancer Institute - Cairo University

Cairo University 2009

Abstract

p27kip1 is an inhibitor of cyclin dependent kinase involved in cell

cycle regulation. The present work aimed at studying the value of p27

expression as a potential prognostic marker in breast duct carcinomas.

p27 immunodetection was estimated and correlated with other

clinicopathological prognostic factors (tumor size, tumor grade and

lymph nodal status) and with other known well established prognostic

biological markers (ER, PR and HER2/neu). Our results revealed the

significant association of decreased p27 level of expression with a more

aggressive tumor phenotype, concluding that p27 could be useful in the

assessment of prognosis, especially in those cases in which the commonly

used parameters are insufficient, and might ultimately influence the

therapy of this disease.

Key Words: Breast duct carcinoma – Prognostic factor – Cell cycle

inhibitor – p27

Acknowledgment

First and foremost, I am indebted to **Allah** forever, the most beneficent and merciful.

It gives me a great pleasure to express my deepest appreciation to **Prof. Dr. Yehia Mohamed Fayed**, **Professor of pathology, Faculty of Medicine, Cairo University**, for his encouragement, keen supervision, useful suggestions and guidance through out this work.

Deep thanks and sincere appreciation to Dr. Samar Abdel-Monem El-Sheikh, Lecturer of pathology, Faculty of Medicine, Cairo University, and Dr. Iman Loay Hussein, lecturer of oncologic pathology, National Cancer Institute, Cairo University, for their keen supervision, valuable assistance, generous help, provision of all facilities and supplies to carry out this work, revision of the manuscript and whole hearted encouragement.

Many thanks to Prof. Dr. Magdy Ibrahim, Professor of Obstetrics & Gynecology, Faculty of Medicine, Cairo University and Director of Research and Biostatistics Unit, MEDC, Cairo University, for his help, effort and support to accomplish the statistical work of this study.

I wish to express my gratitude to the whole staff members of pathology departments at the National Cancer Institute, Cairo University and the National Research Institute, University of Alexandria, for their hearted support, encouragement and advice especially throughout my first steps in my career as a pathologist.

Last but not least, from my whole heart, I would like to express my deepest thanks to my parents, my sisters and my brother, for their love, care and continuous support throughout my life.

My deepest heartful thanks to my husband, Walid Mohamed El-Attar, and his family for their patience, love and continuous encouragement and to my kids Mohamed and Haneen.

LIST OF CONTENTS

Page

Introducti	on	1
Aim of the	e work	4
Review of	Literature	6
• Breas	st carcinoma	7
0	Normal histological structure of the breast	7
0	Incidence of breast cancer	.10
0	Risk factors of breast cancer	.12
0	WHO classification of tumours of the breast	20
0	Prognostic and predictive factors	24
• The c	yclin dependent kinase inhibitor p27 ^{kip1}	48
0	P27 regulation in normal & malignant cells	52
0	P27 localization and D cyclin CDK assembly	58
0	Cytoplasmic p27, migration and metastasis	59
0	Prognostic studies of p27 in human cancers	60
Materials	and Methods	67
Results		.78
Discussion	<i>n</i>	.151
Summary	& Conclusion	.171
Reference	S	177
Arabic Su	mmary	210

LIST OF FIGURES

Page
Figure 1: Anatomy of the breast (Wendie and Thomas, 2006)9
Figure 2: Normal histology of the human breast, a lobe and a TDLU
(Tabár et al., 1998)9
Figure 3: Regulation of the cell cycle (Kong et al, 2003)49
Figure 4: p27 phosphorylation and degradation (Medscape, 2008)56
Figure 5: Distribution of studied cases according to age80
Figure 6: Distribution of tumour grades among the studied
cases81
Figure 7: Grade 2 invasive duct carcinoma showing tubular and
glandular formation. X20082
Figure 8: Same case above exhibiting moderate cellular pleomorphism,
anaplasia and occasional mitosis. X40082
Figure 9: Grade 2 IDC, showing evident tubular formation. X20083
Figure 10: Grade 2 IDC exhibiting moderate cellular pleomorphism and
anaplasia. X40083
Figure 11: High grade IDC, exhibiting marked degree of anaplasia and
frequent mitosis. Abnormal mitotic figures are detected.
X40084
Figure 12: Grade 3 invasive duct carcinoma associated with comedo type
DCIS. X20084
Figure 13: Distribution according to tumour size (T)85
Figure 14: Distribution according to tumour type
Figure 15: Invasive duct carcinoma grade2, associated with DCIS
component of solid and cribriform types. X100
Figure 16: Invasive duct carcinoma associated with DCIS component
comedo, solid and papillary (arrow) types. X20087
Figure 17 : Invasive duct carcinoma showing multiple lymphovascular
emboli (arrows). X200
Figure 18: Evident perineural permeation by malignant ductal cells of
IDC. X200
Figure 20: Distribution according to tumour stage
Figure 21: Distribution according to normone receptor status93 Figure 22: Invasive duct carcinoma strongly expressing ER. X20094
Figure 22: Myasive duct caremonia strongly expressing ER. A20094 Figure 23: Grade 2 IDC with positive ER staining of strong intensity and
high proportion X40094
Figure 24: Invasive duct carcinoma associated with DCIS component
showing weak positive reaction to PR with moderate intensity

	of staining. Positive internal control in one normal breast
	lobule is demonstrated (arrow). X10095
Figure 25:	High grade IDC showing weak positive reaction to ER with
	positive internal control seen in nearby normal breast lobule
	(arrow). X20095
Figure 26:	Moderately positive ER reaction with weak staining intensity
	in grade 2 IDC. X20096
Figure 27:	Grade 2 IDC showing positive PR staining reaction with
	strong intensity. X20096
Figure 28:	Grade 3 IDC showing negative reaction to ER. Positive
	internal control is demonstrated in nearby normal breast lobule
	(arrows). X400
_	Distribution according to HER2/neu expression98
Figure 30:	Invasive duct carcinoma strongly positive for HER2/neu
	(score 3). X20099
Figure 31:	Strong positive reaction for HER2/neu in a case of high grade
	IDC. Tumour cell in mitosis are seen (arrows).
	X40099
Figure 32:	Strong Her2/neu positive reaction in a case of IDC associated
	with comedo DCIS. X200100
Figure 33:	Invasive duct carcinoma with equivocal reaction to HER2/neu
	(score 2). X100100
Figure 34:	Invasive duct carcinoma with equivocal HER2/neu reaction
	(score 2). X200101
Figure 35:	Invasive duct carcinoma with faint complete membranous
	equivocal reaction to HER2/neu (score 2). X200101
Figure 36:	Invasive duct carcinoma showing incomplete membranous
	reaction for HER2/neu (score 1). X400102
Figure 37:	Invasive duct carcinoma with negative staining for HER2/neu
	(score 0). X200
_	Median percentage among studied tumour types104
_	Correlation between p27 expression and tumour type107
O	Correlation between p27 expression and tumour grade108
_	Correlation between p27 expression and tumour size110
Figure 42:	Correlation between p27 expression and lymph nodal
	status112
_	: Correlation between p27 expression and tumour stage114
Figure 44:	Correlation between p27 expression and ER and PR
	status116
_	Correlation between p27 expression and HER2/neu
	118
Figure 46:	Correlation between tumour type and p27 intensity of
staining	120
-	

Figure 47:	Correlation between tumour grade and intensity of p27
staining	122
Figure 48:	Correlation between tumour size and intensity of p27
	staining124
Figure 49:	Correlation between lymph nodal status and p27
intensity	126
Figure 50:	Correlation between tumour stage and p27
intensity	128
Figure 51:	Correlation between ER status and p27 intensity131
_	Correlation between ER/PR status and p27 intensity132
Figure 53:	Correlation between HER2/neu expression and p27
S	intensity
Figure 54:	Correlation between tumour size and p27 cytoplasmic
8	reaction
Figure 55:	Correlation between tumour stage and p27 cytoplasmic
8	reaction
Figure 56:	Correlation between hormone receptor status and p27
8	cytoplasmic reaction
Figure 57:	Correlation between HER2/neu status and p27 cytoplasmic
8	reaction
Figure 58:	Grade 2 invasive duct carcinoma strongly expressing p27
8	(90%) with strong intensity reaction. X200145
Figure 59:	High expression of p27 among tumour cells (90%). Noticed
8	tumour cells in mitosis did not show nuclear expression for
	p27 (arrows).
	X400145
Figure 60:	Grade 2 invasive duct carcinoma expressing p27 (88.3%) with
8	strong intensity reaction. X200
Figure 61:	High grade invasive duct carcinoma showing low expression
8	for p27 (15%). Associated lymphocytic exudate shows strong
	p27 reaction as an internal positive control (arrows).
	p27 reaction as an internal positive control (arrows). X100146
Figure 62:	X100146
Figure 62:	X100
Figure 62:	X100
Figure 62:	X100
g	X100
g	X100
Figure 63:	X100
Figure 63:	X100
Figure 63: Figure 64:	X100
Figure 63: Figure 64:	X100

Figure 66:	Mildly expressed nuclear p27 (23%) with moderate staining
	intensity in a case of invasive duct
	carcinoma.X200149
Figure 67:	High grade invasive duct carcinoma showing low p27
	expression (12.5%) with evident strong cytoplasmic reaction.
	X400149
Figure 68:	Invasive duct carcinoma with very low p27 expression (12%).
	X400150

LIST OF TABLES

	Page
Table 1: TNM staging system of breast cancer, 6th edition	28
Table 2: Bloom Richardson scores in breast cancer	
Table 3: Bloom-Richardson combined score and grades	35
Table 4: Allred score	41
Table 5 : HER2/neu score used to evaluate Hercept Test	46
Table 6: Age distribution among the studied cases	79
Table 7: Distribution of tumour grades among the studied cases	81
Table 8: Distribution of lymph nodal status among studied cases	89
Table 9 : Distribution of tumour stage among studied cases	90
Table 10: Hormone receptor status in cases studied	92
Table 11 : Median percentage of p27 among studied tumour	
types	104
Table 12: Correlation of p27 expression with tumour type	106
Table 13 : Correlation between p27 expression and tumour	
grade	108
Table 14 : Correlation between p27 expression and tumour	
size	109
Table 15 : Correlation between p27 expression and LN status	111
Table 16 : Correlation between p27 expression and tumour	
stage	113
Table 17: Correlation between P27 expression and ER status	115
Table 18 : Correlation between p27 expression and PR status	115
Table 19 : Correlation between p27 expression and HER2/neu	
status	117
Table 20 : Distribution of studied cases according to p27	
intensity	119
Table 21 : Correlation between tumour type and intensity of p27	
staining	120
Table 22 : Correlation between tumour grade and p27 intensity of	
staining	121
Table 23 : Correlation between tumour size and intensity of p27	
staining	123
Table 24: Correlation between lymph nodal status and intensity of	
p27staining	
Table 25 : Correlation between tumour stage and p27 staining	
intensity	
Table 26 : Correlation between ER status and p27 intensity	130
Table 27 : Correlation between PR status and p27 intensity	
Table 28 : Correlation between ER/PR status and p27 intensity	

Table 29: Correlation between HER2/neu status and p27 intensity	.133
Table 30 : Correlation between tumour type and presence of p27	
cytoplasmic reaction	.135
Table 31 : Correlation between tumour grade and presence of p27	
cytoplasmic reaction	.136
Table 32: Correlation between tumour size and p27 cytoplasmic	
reaction	.137
Table 33: Correlation between lymph nodal status and presence of p	27
cytoplasmic reaction	.139
Table 34: Correlation between tumour stage and p27 cytoplasmic	
reaction.	.140
Table 35: Correlation between ER status and p27 cytoplasmic	
reaction	.142
Table 36: Correlation between PR status and p27 cytoplasmic	
reaction	.142
Table 37: Correlation between ER/PR status and p27 cytoplasmic	
reaction.	-
Table 38: Correlation between HER2/neu status and p27 cytoplasmic	;
reaction	.144

LIST OF ABBREVIATIONS

Abl 1: Abelson murine leukemia viral oncogene homolog 1

AG: Adenine Guanine

AKT: protein family, which members are also called protein kinases B (PKB) plays an important role in mammalian cellular signaling. Ak" in Akt was a temporary classification name for a mouse strain developing spontaneous thymic lymphomas. The "t" stands for 'transforming'

BCL-2: B-cell CLL/lymphoma 2 **BR grade:** Bloom Richardson grade

BRCA1: Breast cancer susceptibility gene 1 **BRCA2**: Breast cancer susceptibility gene 2

C: Cytosine

CD: Cathepsin-D

CDKs: Cyclin dependent kinases

CDKN1B: Cyclin-dependent kinase inhibitor 1B **CKS1B**: cyclin-dependent kinase subunit 1B

c-erb-b2: erythroblastic leukemia viral oncogene homolog 2

CHEK2: Cell-cycle checkpoint kinase gene 2

CIS: Carcinoma insitu

CISH: Chromogenic In situ Hybridization **CML**: Chronic myelogenous leukaemia

CUL 1: Cullin 1

DCIS: Ductal carcinoma insitu

Del: Deletion

DFS: Disease free survival **DNA**: Deoxy ribonucleic acid

EGFR: Epidermal growth factor receptor

ER: Estrogen receptor

FISH: Fluorescence In situ hybridization

FoxO: Forkhead box class O family

Fyn: Proto-oncogene tyrosine-protein kinase Fyn

G0: Gap 0 (Resting phase).G1: Growth phase 1 (Gap 1).G2: Growth phase 2 (Gap 2).

GCSF: Granulocyte colony stimulating factor

HER-2/neu: Human Epidermal growth factor Receptor 2

HR: Hazard ratio

HRT: Hormone replacement therapy

ICD-O-3: International Classification of Diseases for Oncology, third revision

IDC: Invasive duct carcinoma **IHC**: Immunohistochemistry **INK4**: Inhibitors of kinase 4

Ins: Insertion

IRES: Internal ribosome entry site

Ki-67: Antigen identified by monoclonal antibody Ki-67

KIP: Kinase Inhibitor Protein

Lck: Leukocyte-specific protein tyrosine kinase

Lyn: V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

M: Mitosis

MEK: Mitogen-activated protein kinase kinase kinase 1, also known as

MAP3K1

MEN: Multiple endocrine neoplasia

MIB1: Mindbomb homolog 1 (Drosophila), commonly used monoclonal antibody to detect the Ki-67 antigen

miRNAs: micro ribonucleic acids

MIs: Mitotic indices

mRNA: messenger ribonucleic acid MYC: myelocytomatosis oncogene NLS: Nuclear localization signal NSCLC: Non-small cell lung cancers

p: Short arm of the chromosomePCBs: Polychlorinated biphenylsPI3Ks: Phosphoinositide 3-kinases

PML: promyelocytic leukaemia protein

PR: Progesterone receptor

PS1 and **PS2**: Presentilin genes 1 and 2

PSA: Prostate specific antigen

PTB: Polypyrimidine tract-binding protein **PTEN**: Phosphatase and tensin homolog

q: long arm of chromosome RAS: Rat Sarcoma gene RB: Retinoblastoma gene

RhoA: Ras homolog gene family, member A

RNA: Ribonucleic acid

SCF complex: Skp1, a Cullin subunit, an F-box protein, and the Roc1/Rbx1 protein

Skp1 and 2: S-phase kinase-associated protein 1 and 2

SPF: S-phase fraction

S-phase: Phase of synthesis

Src: Sarcoma inducing gene of Rous sarcoma virus

T: Tyrosine

TDLU: Terminal Duct-Lobular Unit **TGF**β: Transforming growth factor β

Thr: Threonine

TLIs: Thymidine-labeling indices

Tyr: Tyrosine

Ubc: Ubiquitin-conjugating enzyme **uPA**: Urokinase plasminogen activator

UTR: Untranslated Region, refers to either of two sections on each side of a coding sequence on a strand of mRNA.