GLUTATHION S-TRANSFERASE M1 POLYMORPHISM IN ACUTE LYMPHOBLASTIC LEUKEMIA AND EVALUATION OF ITS RELATION TO PROGNOSIS

Thesis

Submitted for partial fulfillment of Master Degree in

Clinical and Chemical Pathology

By

Mariam Fathy Abdel-Maksoud

M.B.B.Ch., Ain Shams University (2005)

Under Supervision of

Professor/ Hala Mahmoud Hamdi Abaza

Professor of Clinical Hematology Faculty of Medicine, Ain Shams University

Doctor/ Sahar Samir Abdel-Maqsoud

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Doctor/ Deena Mohamed Mohamed Habashy

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine

Hin Shams University

2009

Acknowledgement

First and for most, I thank God for enabling me to attain new knowledge and experience by this work.

I wish to express sincere gratitude to Professor Dr. Hala Mahmoud Hamdi Abaza, Professor of Clinical Hematology, Faculty of Medicine, Ain Shams University, for her precious supervision and valuable guidance. No words can succeed to cope with her overwhelming care and generous help.

I am extremely grateful to Doctor Sahar Samir Abdel-Maqsoud, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind supervision, continuous encouragement and valuable observation.

I deeply appreciate the aid of Doctor Deena Mohamed Mohamed Habashy, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University for her great assistance and valuable support.

I wish to thank my parents for their continuous encouragement and precious advice.

Finally, thanks go to all the patients contributing to this work.

List of Abbreviations

ALL Acute Lymphoblastic Leukemia

t Translocation

HTLV-1 Human Thymic Leukemia Virus-1

DIC Dissiminated Intravascular Coagulopathy

CBC Complete Blood Picture

BM Bone Marrow

LDH Lactate Dehydrogenase

PT Prothrombin Time

aPTT Activated Partial Thromboplastin Time

CNS Central Nervous System

CSF Cerebrospinal Fluid

FAB French-American-British

AML Acute Myelogenous Leukemia

FCM Flow Cytometry

IP Immunophenotyping

CD Cluster of Differentiation

WHO World Health Organization

MRD Minimal Residual Disease

PCR Polymerase Chain Reaction

Ph Philadelphia Chromosome

GST Glutathione S-Transferase

TSO Stillbene Oxide

CML Chronic Myeloid Leukemia

CYP Cytochrome p450

COPD Chronic Obstructive Pulmonary Disease

NAT2 N acetyl Transeferase 2

CDNB 1-Chloro-2, 4-Dinitrobenzene

GSH Reduced Glutathione

RIA Radioimmunoassay

Ag Antigen
Ab Antibody

TR-IFMA Time Resolved Immunoflurometric Assay

PBS Phosphate Buffered Saline

dNTPs Deoxynucleotides

DNA Deoxyribonucleic Acid

Q-PCR Quantitative Real Time Polymerase Chain

Reaction

ds DNA Double Stranded Deoxyribonucleic Acid

FRET Förster (Fluorescence) Resonance Energy Transfer

RET Resonance Energy Transfer

EET Electronic Energy Transfer

List of Contents

	Pag
List Of Abbreviations	
List Of Tables	
List Of Figures	
Introduction	
Aim Of The Work	
Review Of Literature	
Chapter I: Acute Lymphoblastic Leukemia	
Definition	
Incidence And Epidemiology	
Pathophysiology	
Causes And Risk Factors	
Diagnosis And Classification	
Differential Diagnosis	
Treatment	
Prognosis	

List of Contents_(Cont..)

Pa	ge
Chapter II: Glutathione S-Transferases (GSTs)	
Definition	
Structure	
Tissue Specific Expression	
Role And Mechanism Of Action	
Substrates	
Inhibitors	
Classification Of GST Isoenzymes And Their Encoding Genes	
Polymorphism of GST genes	
The impact of GST genes polymorphism on GST enzyme function	
Frequency Of Polymorphic Alleles Of GST In The Population	
Relation between GST Polymorphism And Susceptibility To	

List of Contents_(Cont..)

	Page
Methods Of Detection Of GSTs And	
Polymerase Chain Reaction	
Subjects and methods	
Results	
Discussion	
Summary, Conclusion And Recommendations	
References	
Arabic summary	

List of Tables

Table No.	Title	Page
1	Frequencies of common genetic aberrations in childhood ALL	6
2	FAB classification of ALL	15
3	Cytochemical features differentiating acute leukemias	17
4	Cytochemical stains in relation to FAB classification of ALL	18
5	Immunophenotyping (IP) of acute leukemia	19
6	IP subtypes of ALL and their associated features	20
7	Common genetic subtypes in ALL with their associated features	21
8	WHO classification of ALL	22
9	Prognostic factors in childhood ALL	31
10	Effect of chromosome number on prognosis	35
11	Substrates for GSTs	42

List of Tables_(Cont..)

Table No.	Title	Page
12	Polymorphic alleles of GST genes	44
13	WHO proposed classification of ALL	80
14	Kit contents (MagNa Pure Compact DNA Isolation Kit I)	82
15	Primers and probes used for genotyping of GSTM1 gene	86
16	Preparation of PCR mix	87
17	PCR protocol for GSTM1	88
18	Clinical characteristics of 30 studied ALL patients	91
19	PB and BM results of 30 studied ALL patients	92
20	Immunophenotypes of 30 studied ALL patients	92
21	Results of GSTM1 genotype by RT-PCR of 30 studied ALL patients	92
22	Outcome of therapy in 30 studied ALL patients	93

List of Tables_(Cont..)

Table	Title	Page
No.		
23	GSTM1 genotype incidence in ALL patients and controls	95
24	Comparison between null GSTM1 and positive GSTM1 groups of the 30 ALL patients, as regards clinical and laboratory findings at diagnosis	96
25	Comparison between outcomes of ALL (remission and relapse) as regards clinical and laboratory findings of 30 ALL patients at diagnosis	100
26	Comparison between null GSTM1 genotype and positive GSTM1 as regards outcomes of treatment of ALL	103

List of Figures

Figure No.	Title	Page
1	Morphology of L1 and L2 blasts	15
2	Morphology of L3 blast in Burkitt's leukemia/lymphoma	16
3	Structure of GST	40
4	Diagram of competing reactions that form basis of RIA	56
5	Diagram of ELISA technique to detect GST	57
6	Schematic presentation of the PCR cycle	65
7	Ethidium bromide-stained PCR products after gel electrophoresis	66
8	Real-time PCR by fluorescent probes	73
9	Principles of FRET using hybridization probes and the LightCycler	77
10	Real-time PCR using hybridization probes and the LightCycler	84

List of Figures

Figure No.	Title	Page
11	Flow Chart demonstrating incidence of null GSTM1 in ALL patients and its relation to outcome	104
12	GSTM1 genotypes distribution among patients and controls	104
13	GSTM1 genotypes distribution among males and females	105
14	GSTM1 genotypes distribution among the two studied age groups	105
15	GSTM1 genotypes distribution among the two studied TLC groups	106
16	GSTM1 genotypes distribution among the two studied Hb level groups	106
17	GSTM1 genotypes distribution among the two studied platelet count groups	107
18	GSTM1 genotypes distribution among different Immunophenotypes	107
19	Distribution of different outcomes among the two studied TLC groups	108

List of Figures

Figure No.	Title	Page
20	Distribution of different outcomes among the two studied Hb groups	108
21	Distribution of different outcomes among the two studied platelet count	
	groups	109
22	GSTM1 genotypes distribution among	100
	different outcomes	109

NTRODUCTION

A cute lymphoblastic leukemia (ALL) constitutes 75% of acute leukemias in children. About 2500-3000 children are diagnosed in the United States per year. The probable aetiology is not yet fully understood (Zheng and Honglin, 2005; Redner, 2005).

Glutathion S-transferase (GST) M1, P1 and T1 enzymes phase IIthat are involved conjugation and detoxification of a wide range of xenobiotics including environmental carcinogens and GST chemo-therapeutic agents. polymorphisms have, thus, been considered as possible risk factor of acute lymphoblastic leukemia (Zheng and Honglin, *2005).*

Previous studies of childhood acute lymphoblastic leukemia (ALL) provided controversial data on the role of GST genotype in susceptibility and treatment outcomes (*Zheng and Honglin, 2005; Davies et al., 2008*).

Zheng and Honglin, (2005) suggested that GSTM1 and GSTT1 but not GSTP1 polymorphisms, appear to be associated with an increase in the risk of acute lymphoblastic leukemia. Thus, it is conceivable that GSTM1 and/or GSTT1 null genotypes may play a role in leukemogenesis.