PROPOSED ALGORITHMS FOR INCIPIENT FAULTS DIAGNOSIS OF OIL-FILLED TRANSFORMERS

By

Mostafa Mahmoud Ibrahim Abdo

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PROPOSED ALGORITHMS FOR INCIPIENT FAULTS DIAGNOSIS OF OIL-FILLED TRANSFORMERS

By

Mostafa Mahmoud Ibrahim Abdo

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Essam El-Din Abo-ElZahab Dr. Mahmoud Mohamed Sayed

Electrical Power and Machines department Faculty of Engineering - Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PROPOSED ALGORITHMS FOR INCIPIENT FAULTS DIAGNOSIS OF OIL-FILLED TRANSFORMERS

By

Mostafa Mahmoud Ibrahim Abdo

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the

Examining Committee

Prof. Dr. Sobhy Serry Dessouky
Port Said University

Prof. Dr. Adel Dia El-Din Shaltout
Cairo University

Prof. Dr. Essam El-Din Abo-ElZahab
Cairo University

Main Supervisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ACKNOWLEDGMENTS

First of all, thanks Allah who supported and strengthened me all through my life.

I would like to offer my sincerest gratitude to my supervisors, Prof.Dr. Essam Abo El-Zahab and Dr.Mahmoud Sayed, especially for their kind patience and for supporting me throughout my research. I would like to express my appreciation towards them, for their assistance and their expert guidance throughout the research.

Also, I would like to express my deep gratitude to Eng. Mostafa El-Sayed and Eng. Mohamed Hamdy for supporting me to finalize my thesis.

Finally, I would like to thank my parents and each member of my family for their words of great inspiration and encouragement.

LIST OF PUBLICATIONS

- 1) Mostafa.M.Ibrahim, M.M.Sayed, and E.E.Abu El-Zahab, "Diagnosis of Power Transformer Incipient Faults Using Fuzzy Logic-IEC Based Approach," Proceeding of the IEEE International Energy Conference, Dubrovnik, Croatia, 2014, Page(s): 258-261.
- 2) Mostafa.M.Ibrahim, M.M.Sayed, and E.E.Abu El-Zahab, "Artificial intelligence solution for incipient faults diagnosis of oil-filled power transformers", Accepted for publication in the journal of electric engineering, will be available online by March 2016.

TABLE OF CONTENTS

ACKNOWLEDGMENTSIV
LIST OF PUBLICATIONSV
TABLE OF CONTENTSVI
LIST OF TABLESIX
LIST OF FIGURESXI
LIST OF SYMBOLS AND ABBREVIATIONSXII
ABSTRACTXIV
CHAPTER 11
INTRODUCTION1
1.1 General
1.2 Thesis objective
1.3 Thesis layout
CHAPTER 23
TRANSFORMERS FAULTS AND THEIR IMPACTS3
2.1 Power transformers importance
2.2 Common types of transformers faults
2.2.1 Faults of outlet short circuit5
2.2.2 Winding faults5
2.2.3 Core faults6
2.3 Incipient faults of power transformers
2.3.1 Thermal faults8
2.3.2 Electrical faults

CHAPTER 3	12
DISSOLVED GAS ANALYSIS OF OIL-FILLED POWER TRANSFORMERS	12
3.1 Introduction.	12
3.2 The conventional techniques of DGA	14
3.2.1 Key gas method	14
3.2.2 Dornenburg ratio method.	16
3.2.3 Rogers ratio method.	18
3.2.4 IEC method.	18
3.2.5 Duval's triangle	20
3.3 The artificial intelligence techniques of DGA	22
3.3.1 Fuzzy logic systems applied to DGA	23
3.3.2 Artificial neural network applied to DGA	24
3.3.3 Neuro-fuzzy systems applied to DGA	24
3.3.4 Genetic algorithm applied to DGA	26
3.3.5 Wavelet networks applied to DGA	26
3.3.6 Self organizing map applied to DGA	27
3.4 Review for previous research work	28
CHAPTER 4	30
FUZZY LOGIC APPROACH APPLIED TO DGA	30
4.1 Introduction	30
4.2 Foundations of fuzzy logic	30

4.3 Fuzzy inference systems.	32
4.4 Fuzzy diagnostic system	32
4.5 IEC based fuzzy logic system.	34
4.6 Tests and results	40
4.7 Cases for study	45
4.8 Chapter discussion.	50
CHAPTER 5	51
NEURAL NETWORK APPROACH APPLIED TO DGA	51
5.1 Introduction	51
5.2 Foundations of neural networks	51
5.3 Neural network diagnostic system	54
5.4 IEC based neural network approach	56
5.5 Tests and results	61
5.6 Cases for study	64
5.7 Chapter discussion.	65
CHAPTER 6	67
CONCLUSIONS AND FUTURE WORK	67
6.1 Conclusions	67
6.2 Future work	68
DEFEDENCES	60

LIST OF TABLES

Table 2.1: Relationship between the main characteristic gases and the abnormal	l
conditions	10
Table 2.2: Relationship between hydrocarbon gases and fault type	10
Table 3.1: The main gases analyzed by DGA	13
Table 3.2: Concentration L1 for Doernenburg Ratio method	17
Table 3.3: Fault diagnosis for Doernenburg Ratio Method	17
Table 3.4: Rogers's ratios for key gases.	18
Table 4.1: Fault types used in the analysis	33
Table 4.2: Diagnosis using IEC ratio method.	34
Table 4.3: Gas ratio codes.	34
Table 4.4: Properties of inputs and outputs of the FIS	34
Table 4.5: Tested gas data and diagnosis by FLA	43
Table 5.1: Fault types used in the analysis	56
Table 5.2: Properties of inputs and outputs of the ANNA	56
Table 5.3: Tested gas data and diagnosis by ANNA	62

LIST OF FIGURES

Figure 2.1: Example for the damage within a power transformer (1)	3
Figure 2.2: Example for the damage within a power transformer (2)	4
Figure 2.3: Defective at top of a winding.	5
Figure 2.4: how oil is extracted from inside the transformer	7
Figure 2.5: The effect of incipient fault occurring within a power transformer.	7
Figure 3.1: Hydrocarbon gas evolution in transformer oil against temperature.	14
Figure 3.2: Key gas method for (Overheated oil)	15
Figure 3.3: Key gas method for (Overheated cellulose)	15
Figure 3.4: Key gas method for (Partial discharge in oil)	15
Figure 3.5: Key gas method for (Arcing in oil)	16
Figure 3.6: Faults detected by IEC method.	19
Figure 3.7: Duval triangle method.	21
Figure 3.8: Strategy for combined fuzzy logic and neural network	25
Figure 3.9: The Self-Organizing Transformer Diagnosis System	28
Figure 4.1: The basic structure of the fuzzy inference system	33
Figure 4.2: The fuzzy inference system editor.	35
Figure 4.3: The structure of the designed fuzzy diagnosis system	36
Figure 4.4: Membership function of (C ₂ H ₂ /C ₂ H ₄).	36
Figure 4.5: Membership function of (CH ₄ /H ₂).	37
Figure 4.6: Membership function of (C ₂ H ₄ /C ₂ H ₆).	37
Figure 4.7: The membership function of the output (fault type)	37
Figure 4.8: The rule editor of the fuzzy inference system	38
Figure 4.9: Simulink model for the fuzzy system.	40
Figure 4.10: The percentage of the faults in the sample	41
Figure 4.11: The accuracy of the used FLA for each general fault type	42
Figure 4.12: Comparison between the FLA and the conventional diagnosis	
methods	44
Figure 4.13: Rule viewer for the first case study	45
Figure 4.14: Rule viewer for the second case study	46
Figure 4.15: Rule viewer for the third case study	47
Figure 4.16: Rule viewer for the forth case study	48

Figure 4.17: Rule viewer for the fifth case study	49
Figure 5.1: Basic neuron without bias	51
Figure 5.2: One layer neural network.	52
Figure 5.3: The weight matrix	53
Figure 5.4: Multiple layers neural network.	54
Figure 5.5: Layout of a neural network.	55
Figure 5.6: The architecture of the used ANN	57
Figure 5.7: Tangent sigmoid transfer function.	58
Figure 5.8: Linear transfer function.	59
Figure 5.9: The simulink model for the proposed ANN	60
Figure 5.10: The percentage of each general fault in the sample	61
Figure 5.11: The accuracy of the used ANNA for each general fault type	63
Figure 5.12: Comparison between the ANNA and the conventional diagnosis	
methods	64
Figure 5.13: Comparison between different methods accuracy	66

LIST OF SYMBOLS AND ABBREVIATIONS

• Chemical symbols

H2 : Hydrogen

CH₄ : Methane

C₂H₆ : Ethane

C₂H₄ : Ethylene

C2H2 : Acetylene

CO : Carbon monoxide

CO₂ : Carbon dioxide

O2 : Oxygen

N2 : Nitrogen

Abbreviations

DGA :Dissolved gas analysis

FIS :Fuzzy inference system

FLA :Fuzzy logic approach

ANN :Artificial neural network

AFC :Actual fault condition

AI :Artificial intelligence

GA :Genetic algorithm

PD :Partial discharge

D1 :Discharge of low energy

D2 :Discharge of high energy

T1 :Thermal fault (T<300°C)

T2 :Thermal fault $(300 < T < 700^{\circ}C)$

T3 :Thermal fault (T>700°C)

ABSTRACT

Power transformers are one of the most expensive and important equipment in power systems. Fault occurrence within a power transformer may lead to the interruption of the electrical energy to consumers.

A power transformer during operation is subjected to different stresses such as electrical stress and thermal stress which lead to liberation of gases from the hydrocarbon mineral oil. Dissolved gas analysis (DGA) is one of the most useful methods to detect power transformers incipient faults. There are different conventional DGA methods developed for analyzing these gases such as key Gas, Rogers Ratio, Dornenburg, International Electrotechnical Commission (IEC) Ratio, and Duval triangle. Artificial Intelligence (AI) can also be used to detect power transformers incipient faults.

In this thesis, two different proposed algorithms based on artificial intelligence techniques (fuzzy logic approach and neural network approach) are used to get the correct diagnosis of the incipient faults in order to avoid the drawbacks of the conventional DGA methods. In order to examine the accuracy of the proposed artificial intelligence fault diagnosis techniques, various power transformers DGA results are tested. The accuracy of each approach is then calculated and compared with the accuracy of the conventional DGA methods.

CHAPTER 1

INTRODUCTION

1.1 General

Power transformers have an essential impact in both the transmission and distribution of electrical energy. It is one of the very important oil-insulated components in power systems and its operational state determines the safety of the whole power system. Failure within a power transformer may lead to long interruption in electrical energy supply and need expensive repairs. Any incipient fault within a transformer must be detected as early as possible in order to prevent the transformer from more deterioration. Several diagnosis methods are developed in order to determine the various fault types occurring during transformers operation like arcing, partial discharge and hot spots.

Dissolved Gas Analysis (DGA) is considered an effective tool to diagnose the incipient fault within a power transformer. There are many conventional methods developed to determine transformer fault which are Key Gas method, Rogers Ratio Method, Dornenburg Ratio Method, IEC Ratio method and Duval Triangle method. However, these conventional methods have many disadvantages. One disadvantage is that conventional DGA techniques sometimes fail to determine the correct diagnosis of a power transformer due to the no matching codes for diagnosis due to the coding boundary and the sharp codes change. Another disadvantage is that conventional DGA techniques sometimes do not take into consideration some possible transformer conditions. Recently, many artificial intelligence (AI) methods have been developed in order to overcome the disadvantages of the conventional DGA methods.

1.2 Thesis objectives

The main objectives of the thesis can be summarized in the following points:

- 1. Studying the stresses that affect oil-filled power transformers and their effect on the insulating oil.
- 2. Studying the main conventional DGA techniques and their drawbacks.